
APBS
Release 3.0.0

Oct 02, 2020

Contents

1 Overview 3

2 Contents 5
2.1 Getting APBS . 5
2.2 Using APBS . 10
2.3 Solvation model background . 60
2.4 Supporting APBS . 64
2.5 Getting help . 65
2.6 Further reading . 65
2.7 File formats . 67
2.8 Release history . 72
2.9 Indices and tables . 93

Bibliography 95

i

ii

APBS, Release 3.0.0

Release 3.0.0

Date Oct 02, 2020

Contents 1

APBS, Release 3.0.0

2 Contents

CHAPTER 1

Overview

An understanding of electrostatic interactions is essential for the study of biomolecular processes. The structures of
proteins and other biopolymers are being determined at an increasing rate through structural genomics and other efforts
while specific linkages of these biopolymers in cellular pathways or supramolecular assemblages are being detected
by genetic and proteomic studies. To integrate this information in physical models for drug discovery or other appli-
cations requires the ability to evaluate the energetic interactions within and between biopolymers. Among the various
components of molecular energetics, solvation properties and electrostatic interactions are of special importance due
to the long range of these interactions and the substantial charges of typical biopolymer components.

APBS solves the equations of continuum electrostatics for large biomolecular assemblages. This software was de-
signed “from the ground up” using modern design principles to ensure its ability to interface with other computational
packages and evolve as methods and applications change over time. The APBS code is accompanied by extensive
documentation for both users and programmers and is supported by a variety of utilities for preparing calculations
and analyzing results. Finally, the free, open-source APBS license ensures its accessibility to the entire biomedical
community.

3

APBS, Release 3.0.0

4 Chapter 1. Overview

CHAPTER 2

Contents

2.1 Getting APBS

Note: Before you begin! APBS funding is dependent on your help for continued development and support. Please
register before using the software so we can accurately report the number of users to our funding agencies.

2.1.1 Web servers

Most functionality is available through our online web servers.

The web server offers a simple way to use both APBS and PDB2PQR without the need to download and install
additional programs.

After registering, please visit http://server.poissonboltzmann.org/ to access the web server.

2.1.2 Installing from pre-compiled binaries

The best way to install APBS is via download of a pre-compiled binary from SourceForge or GitHub releases (after
registering, of course).

What’s in the box?

The binary distributions typically provide the following contents:

bin contains the main APBS executable

share/apbs contains additional APBS-related files

doc the APBS programmer guide

examples APBS examples

5

http://eepurl.com/by4eQr
http://eepurl.com/by4eQr
http://server.poissonboltzmann.org/
http://sourceforge.net/projects/apbs
https://github.com/Electrostatics/apbs/releases
http://eepurl.com/by4eQr

APBS, Release 3.0.0

tests the APBS test suite

tools useful programs to help process APBS input and output

include header files for building software that calls APBS

lib libraries for building software that calls APBS

2.1.3 Installing from source code

Those who enjoy an adventure can download the source code from GitHub releases and install from source code
following the directions at the link below:

How to build APBS from source

These instructions assume that you have downloaded the source code from GitHub releases.

Caution: We do not recommend cloning directly from the head of the master branch because it is typically under
development and could be unstable. Unless you really know what you are doing, we advise you to skip the next
step.

Get source directly from Github

Here are the commands to get the source directly from our GitHub repository,

git clone https://github.com/Electrostatics/apbs
cd apbs

Shortcut to build

There is a script that is used to build APBS in the Github Actions. You may want to use the file, .build.sh, as a
template for building APBS.

Caution: When using make, there can be race conditions with CMake, autoconf, downloading dependencies, and
make. It is best to run

VERBOSE=1 make -j 1

Import submodules

We are using Git submodules to manage various pieces of code. To build the master branch, after cloning it, you will
need to do the following from within the top of the source directory:

git submodule init
git submodule update

6 Chapter 2. Contents

https://github.com/Electrostatics/apbs/releases
https://github.com/Electrostatics/apbs/releases
https://github.com/Electrostatics/apbs

APBS, Release 3.0.0

Set up CMake

From the top of the source directory, the basic commands for configuring the APBS build for CMake are

mkdir build
cd build
NOTE: This will be you $APBS_BUILD_DIR
export APBS_BUILD_DIR=`echo $(PWD)`
cmake ..

To see all the options you can run:

cd $APBS_BUILD_DIR
ccmake ..

Additional features can be built using the flags described below.

Geometric flow

If you want to use the geometric flow implementation, when invoking CMake, set ENABLE_GEOFLOW to ON; e.g.,

cd $APBS_BUILD_DIR
cmake -DENABLE_GEOFLOW=ON ..

Using PB-AM

If you want to use the Poisson-Boltzmann Analytical Method developed by the Teresa Head-Gordon lab, set the
CMake variable ENABLE_PBAM to ON.

Warning: PB-AM currently runs on OS X or Linux only.

cd $APBS_BUILD_DIR
cmake -DENABLE_PBAM=ON ..

Using TABI-PB

If you want to use the Treecode-Accelerated Boundary Integral method (TABI-PB) developed by Robert Krasny and
Weihua Geng, set the CMake variable ENABLE_BEM to ON.

TABI-PB requires the use of a molecular surface mesh generation software to create a surface representation of the
molecule. By default, TABI-PB uses NanoShaper to generate an SES or Skin surface. See TABI-PB documentation
for details on choosing NanoShaper. When TABI-PB runs, it will attempt to generate a surface mesh by looking in
your path for the mesh generation executable. A user can obtain the appropriate executable using the steps described
below. The user then must place these executables in their path.

cd $APBS_BUILD_DIR
cmake -DENABLE_BEM=ON ..

2.1. Getting APBS 7

https://github.com/Treecodes/TABI-PB

APBS, Release 3.0.0

Getting NanoShaper executable

Surface meshing software executables are currently pre-built for OS X, Linux, and Windows and can be installed via
CMake. The executables will be placed in the bin directory of your build.

NanoShaper is a molecular surface mesh generation software package developed by W. Rocchia and S. Decherchi.

cd $APBS_BUILD_DIR
cmake -DGET_NanoShaper=ON ..

Using finite element support

Warning: Finite element methods are currently only supported on POSIX-like operating systems such as OS X
or Linux.

To enable finite element support, set the CMake ENABLE_FETK variable to ON.

On Linux, the FETK shared libraries need to be locatable by the shared library loader. One way to do this is to update
LD_LIBRARY_PATH to point at <build-dir>/fetk/lib, where <build-dir> is the location where APBS
was built. In base, this can be accomplished with the command:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<build-dir>/fetk/lib:<install-dir>/fetk/lib
cd $APBS_BUILD_DIR
cmake -DENABLE_FETK=ON ..

Enabling APBS Python support

APBS Python support requires a local installation of SWIG.

Assuming SWIG is installed, APBS Python support can be enabled by setting the CMake variable ENABLE_PYTHON
to ON. If you are on Linux you will also need to set the CMake variable BUILD_SHARED_LIBS to OFF.

cd $APBS_BUILD_DIR
cmake -DENABLE_PYTHON=ON ..

Building the code - minimal

Assuming the Cmake command completed successfully, APBS can be built with

cd $APBS_BUILD_DIR
Run cmake with the options you prefer:
VERBOSE=1 make -j 1

Building the code - advanced

export INSTALL_DIR=$SOME_DIR/apbs
export PATH=$INSTALL_DIR/bin:$PATH
NOTE: In case you need to debug the source code:

(continues on next page)

8 Chapter 2. Contents

http://www.swig.org/

APBS, Release 3.0.0

(continued from previous page)

export RELEASE_TYPE=Debug
export RELEASE_TYPE=Release
NOTE: If cmake or make fail, save yourself and make sure your remove
everything including the build directory. This code base uses
many older autoconf based projects that do not know how to save
state or recover from partial builds. If cmake or make fail, you
should figure out how to fix it and then remove everything and
try again.
rmdir $APBS_BUILD_DIR
mkdir -p $APBS_BUILD_DIR
cd $APBS_BUILD_DIR
NOTE: In case you need to debug cmake, use verbose debug/trace mode:
cmake -S .. -B $BUILD_DIR --trace-source=../CMakeLists.txt --trace-expand \
cmake \

-DCMAKE_INSTALL_PREFIX=$INSTALL_DIR \
-DCMAKE_BUILD_TYPE=$RELEASE_TYPE \
-DENABLE_GEOFLOW=ON \
-DENABLE_BEM=ON \
-DENABLE_FETK=ON \
-DENABLE_OPENMP=ON \
-DENABLE_PBAM=ON \
-DENABLE_PBSAM=ON \
-DENABLE_PYTHON=ON \
-DENABLE_TESTS=ON \
-DENABLE_TINKER=OFF \
-DBUILD_SHARED_LIBS=ON \
..

VERBOSE=1 make -j 1

Testing APBS

cd $APBS_BUILD_DIR
NOTE: Assuming you have already built APBS
NOTE: So that the apbs and optional NanoShaper binaries are in the path:
export PATH="$APBS_BUILD_DIR/bin:$PATH"
ctest -C Release --output-on-failure

Installing APBS

export INSTALL_DIR="Some directory - default is /usr/local"
cd $APBS_BUILD_DIR
cmake \

-DCMAKE_INSTALL_PREFIX=$INSTALL_DIR \
NOTE: Add cmake options that you used during the Build APBS section

..
VERBOSE=1 make -j 1 install

2.1. Getting APBS 9

APBS, Release 3.0.0

2.1.4 Current platform support

OS PYTHON
VERSION

GE-
OFLOW

BEM,
NanoShaper

FETK PB-
SAM

PBAM PYTHON
SUPPORT

SHARED_LIBS

Ubuntu 3.7+ Yes Yes Yes Yes Yes Yes Yes
Ma-
cOSX

3.7+ Yes Yes Yes Yes Yes Yes Yes

Win-
dows
10

3.7+ Yes Yes No No Yes Yes No

2.2 Using APBS

Note: Before you begin! PDB2PQR funding is dependent on your help for continued development and support.
Please register before using the software so we can accurately report the number of users to our funding agencies.

APBS is often used together with the PDB2PQR software; e.g., ,in the following type of workflow

1. Start with a PDB ID or locally generated PDB file (see PDB molecular structure format).

2. Assign titration states and parameters with pdb2pqr to convert the protein and ligands to PQR format (see
PQR molecular structure format).

3. Perform electrostatics calculations with apbs (can be done from within the PDB2PQR web server).

4. Visualize results from within PDB2PQR web server or with Other software.

2.2.1 Web server use

Most users will use PDB2PQR through the web server (after registering, of course). However, it is also possible to
install local versions of PDB2PQR and run these through the command line.

2.2.2 Command line use

apbs [options] input-file

where the list of [options] can be obtained by running APBS with the --help option. The input file format is
described below.

2.2.3 Input file syntax

APBS input files are loosely-formatted files which contain information about the input, parameters, and output for
each calculation.

These files are whitespace- or linefeed-delimited. Comments can be added to the input files via the # character; all
text between the # and the end of the line is not parsed by APBS. If pathnames used in the input file contain spaces,
then the entire pathname must be enclosed in quotes. For example, if you wanted to refer to the file foo which resides
in a directory with spaces in its name, then you should refer to foo as "/path with spaces/foo". Specific
examples of APBS input are provided in Examples.

10 Chapter 2. Contents

http://eepurl.com/by4eQr
https://github.com/Electrostatics/pdb2pqr
https://www.rcsb.org/pages/help/advancedsearch/pdbIDs
http://server.poissonboltzmann.org/
http://eepurl.com/by4eQr

APBS, Release 3.0.0

APBS input files contain three basic sections which can be repeated any number of times:

READ input file section section for specifying input

ELEC input file section section for specifying polar solvation (electrostatics) calculation parameters

APOLAR input file section section for specifying apolar solvation calculation parameters

PRINT input file section section for specifying summary output

The APBS input file is constructed from these sections in the following format:

READ
...
END

ELEC
...
END

APOLAR
...
END

PRINT
...
END

QUIT

These sections can occur in any order and can be repeated any number of times. However, the sections are inter-
dependent. For example, PRINT requires ELEC and/or APOLAR while ELEC requires one or more READ sections.
Sections can also be repeated; several READ statements may be used to load molecules and multiple ELEC or APO-
LAR sections would specify various electrostatics calculations on one or more molecules.

Each section has the following syntax:

SECTION [name <id>]

where the optional name argument allows the user to include a string to identify the section. In the absence of this
argument, sections are assigned numerical IDs.

READ input file section

The READ block of an APBS input file has the following general format:

READ
[keywords...]

END

where keywords is or more of the keywords described below (the line breaks and indentation are for clarity; only
whitespace is necessary).

Note: One of these sections must be present for every molecule involved in the APBS calculation. Molecule and
“map” IDs are assigned implicitly assigned for each molecule/map read, based on order and starting at 1 and incre-
mented independently for each input type. In other words, each input PQR file is assigned an ID 1, 2, 3, . . . ; each
input dielectric map is assigned an independent ID 1, 2, 3, . . . ; etc.

2.2. Using APBS 11

APBS, Release 3.0.0

charge

This command allows APBS to read the fixed (molecular) charge density function mapped to a mesh. The inputs are
maps of charge densities; these values have units of ec Å-3, where ec is the electron charge. In general, this command
will read charge-maps written by ELEC input file section write commands. The syntax of this command is:

READ charge {format} {path} END

format Specify the format of the charge map. Acceptable values include:

dx OpenDX scalar data format

gz gzipped (zlib) compressed OpenDX scalar data format. Files can be read directly in compressed form.

path The location of the charge map file.

diel

This command allows APBS to read the dielectric function mapped to 3 meshes shifted by one-half grid spacing in
the x, y, and z directions. The inputs are maps of dielectric variables between the solvent and biomolecular dielectric
constants; these values are unitless. In general, this command will read dielectric maps written by by ELEC input file
section write commands. The syntax of this command is:

READ diel {format} {path-x} {path-y} {path-z} END

format The format of the dielectric map.

dx OpenDX scalar data format

gz gzipped (zlib) compressed OpenDX scalar data format. Files can be read directly in compressed form.

path-x The location of the x-shifted dielectric map file.

path-y The location of the y-shifted dielectric map file.

path-z The location of the z-shifted dielectric map file.

Note: If you choose this option and have a non-zero ionic strength, you must also include a READ kappa statement.

kappa

This command allows APBS to read the ion-accessibility function mapped to a mesh. The inputs are maps of ion
accessibility values which range between 0 and the build Debye-Hückel screening parameter; these values have units
of Å-2. In general, this command will read kappa-maps written by by ELEC input file section write commands. The
syntax of this command is:

READ kappa {format} {path} END

format Specify the format of the charge map. Acceptable values include:

dx OpenDX scalar data format

gz gzipped (zlib) compressed OpenDX scalar data format. Files can be read directly in compressed form.

path The location of the map file.

12 Chapter 2. Contents

APBS, Release 3.0.0

Note: If you choose this option, you must also include a read diel statement.

mol

This command specifies the molecular data to be read into APBS. The syntax is

READ mol {format} {path} END

format The format of the input data.

pqr Specify that molecular data is in PQR format.

pdb Specify that molecular data is in pseudo-PDB format. If this type of structure file is used, then a parameter
file must also be specified with a READ parm statement to provide charge and radius parameters for the
biomolecule’s atoms.

path The location of the molecular data file.

parm

This command specifies the charge and radius data to be used with pseudo-PDB-format molecule files. The syntax is:

READ parm {format} {path} END

format The format of the parameter file.

flat Specify that the parameter file is in APBS flat-file parameter format.

xml Specify that the parameter file is in APBS XML parameter format

path The location of the parameter data file.

Note: APBS provides a few example files as part of the source code distribution. Currently, example files only contain
the polar parameters that can also be assigned more easily through the PDB2PQR software.

pot

This command allows APBS to read the electrostatic potential mapped to a mesh. The inputs are maps of the electro-
static potential from a previous calculation. In general, this command will read potential-maps written by by ELEC
input file section write commands. The syntax of this command is:

READ pot {format} {path} END

format Specify the format of the charge map. Acceptable values include:

dx OpenDX scalar data format

gz gzipped (zlib) compressed OpenDX scalar data format. Files can be read directly in compressed form.

path The location of the map file.

Note: To use this functionality you must set the bcfl keyword to map. See also: usemap.

2.2. Using APBS 13

APBS, Release 3.0.0

ELEC input file section

The ELEC block of an APBS input file is used for polar solvation (electrostatics) calculations and has the following
syntax:

ELEC [name {id}]
{type}
{keywords...}

END

The optional id variable is a simple string that allows ELEC statements to be named. Since numerous ELEC blocks
may appear in an APBS input file, it can be difficult to keep track of them all. It is possible to assign an optional name
(string) to each ELEC block to simplify the organizational process.

The type command defines the types of ELEC calculation to be performed and includes:

• Finite difference multigrid calculations with PMG.

– mg-auto

– mg-para

– mg-manual

• Geometric flow solvation finite difference calculations

– geoflow-auto

• Boundary element method calculations with TABI-PB.

– tabi

• Analytic and semi-analytic Poisson-Boltzmann approximations

– pbam-auto

– pbsam-auto

• Finite element calculations with FEtk.

– fe-manual

• No-op modes for generating coefficient maps

– mg-dummy

Finally, the keywords are calculation-specific commands that customize the particular type of calculation. This
section is the main component for polar solvation calculations in APBS runs. There may be several ELEC sections,
operating on different molecules or using different parameters for multiple runs on the same molecule. The order of the
ELEC statement can matter since certain types of boundary conditions (bcfl) can require information about previous
calculations.

tabi

This mode uses the TABI-PB integral equation software from Geng and Krasny to solve the linearized Poisson-
Boltmzann equation. Boundary element methods offer the ability to focus numerical effort on a much smaller region
of the problem domain: the interface between the molecule and the solvent. In this method, two coupled integral
equations defined on the solute-solvent boundary define a mathematical relationship between the electrostatic surface
potential and its normal derivative with a set of integral kernels consisting of Coulomb and screened Coulomb po-
tentials with their normal derivatives. The boundary element method requires a surface triangulation, generated by a
program such as NanoShaper, on which to discretize the integral equations.

For more information, see the Geng & Krasny 2013 J Comput Phys paper.

14 Chapter 2. Contents

http://www.fetk.org
https://www.ncbi.nlm.nih.gov/pubmed/23212974
https://doi.org/10.1016/j.jcp.2013.03.056
http://www.fetk.org
https://www.electrostaticszone.eu/downloads
https://doi.org/10.1016/j.jcp.2013.03.056

APBS, Release 3.0.0

ion

Specify the bulk concentrations of mobile ion species present in the system. This command can be repeated as neces-
sary to specify multiple types of ions; however, only the largest ionic radius is used to determine the ion-accessibility
function. The total bulk system of ions must be electroneutral which means the charge densities/concentrations of
positive and negative ions must be equal. The syntax is:

ion charge {charge} conc {conc} radius {radius}

where

charge Mobile ion species charge (floating point number in ec)

conc Mobile ion species concentration (floating point number in M)

radius Mobile ion species radius (floating point number in Å)

mac

TABI-PB parameter, multipole acceptance criterion (MAC), that controls distance ratio at which the method uses
direct summation or Taylor approximation (a particle-cluster interaction) to calculate the integral kernels. The syntax
is:

mac {theta}

where theta is a floating-point number from 0 to 1 controlling the distance ratio. This multipole acceptance criterion
(MAC) is 𝑟𝑐

𝑅 6 𝜃, where 𝑟𝑐 is the cluster radius, and 𝑅 is the distance of the particle to the cluster center. If the above
relationship is satisfied, the Taylor approximation will be used instead of direct summation. A typical value for this
parameter is 0.8.

mesh

TABI-PB parameter that spceifies the meshing software used to generate surface mesh. The syntax is:

mesh {flag}

where flag is an integer indicating the meshing software to be used:

0 Formerly used for msms, no longer supported.

1 SES implementation in NanoShaper

2 Skin surface implementation in NanoShaper

Note that the executable NanoShaper must be included in your path to use them.

mol

This term specifies the molecule for which the calculation is to be performed. The syntax is:

mol {id}

where id is the integer ID of the molecule for which the apolar calculation is to be performed. The molecule IDs are
based on the order in which molecules are read by READ mol statements (see READ input file section), starting from
1.

2.2. Using APBS 15

https://www.electrostaticszone.eu/downloads
https://www.electrostaticszone.eu/downloads
https://www.electrostaticszone.eu/downloads

APBS, Release 3.0.0

outdata

TABI-PB parameter that specifies the file type for printing the output data. The syntax is:

outdata {flag}

where flag is an integer indicating the output file types:

0 .dat format

1 Both the .dat format and a VTK polygonal data file that can be visualized in the ParaView software. The VTK file
contains color mappable potentials and normal derivatives of potentials on the faces and vertices of the mesh.

pdie

Specify the dielectric constant of the solute molecule. The syntax is:

pdie {diel}

where diel is the floating point value of the unitless biomolecular dielectric constant. This is usually a value between
2 to 20, where lower values consider only electronic polarization and higher values consider additional polarization
due to intramolecular motion. The dielectric value must be ≥ 1.

sdens

This keyword specifies the number of quadrature points per Å2 to use in calculation surface terms (e.g., molecular
surface, solvent accessible surface). This keyword is ignored when srad is 0.0 (e.g., for van der Waals surfaces) or
when srfm (elec) is spl2 (e.g., for spline surfaces). The syntax is:

sdens {density}

where density is a floating point number indicating the number of grid points per Å-2. A typical value is 10.0.

Note: There is a strong correlation between the value used for the sphere density, the accuracy of the results, and the
APBS calculation time.

sdie

Specify the dielectric constant of the solvent. The syntax is:

sdie {diel}

where diel is a floating point number representing the solvent dielectric constant (unitless). This number must be
≥ 1. Bulk water at biologically-relevant temperatures is usually modeled with a dielectric constant of 78-80.

srad

This keyword specifies the radius of the solvent molecules; this parameter is used to define various solvent-related
surfaces and volumes (see srfm (elec)). This value is usually set to 1.4 Å for a water-like molecular surface and set to
0 Å for a van der Waals surface. The syntax is:

16 Chapter 2. Contents

APBS, Release 3.0.0

srad {radius}

where radius is the floating point value of the solvent radius (in Å). This keyword is ignored for srfm spl2 (see
srfm (elec)).

temp

This keyword specifies the temperature for the calculation. The syntax is:

temp {T}

where T is the floating point value of the temperature for calculation (in K).

tree_n0

TABI-PB parameter that specifies the maximum number of particles in a treecode leaf. This controls leaf size in the
process of building the tree structure. The syntax is:

tree_n0 {max_number}

where max_number is an integer. A typical value for this parameter is 500.

tree_order

TABI-PB parameter that specifies the order of the treecode multipole expansion. The syntax is:

tree_order {order}

where order is an integer that indicates the Taylor expansion order. Users can adjust the order for different accuracy.
A typical choice for this parameter is 3.

Background information

The Treecode-Accelerated Boundary Integral Poisson-Boltzmann solver (TABI-PB; Geng, 2013 calculates electro-
statics of solvated biomolecules governed by the linearized Poisson-Boltzmann equation. It uses a well-posed bound-
ary integral Poisson-Boltzmann formulation to ensure rapid convergence. In addition, a fast treecode algorithm for
the screened Coulomb potential (Li, 2009) is applied to speed up the matrix-vector products in each GMRES itera-
tion. The molecular surfaces, which divide the entire domain into solute region and solvent region, are generated by
NanoShaper.

TABI-PB algorithm

The coupled integral equations derived from the linearized Poisson-Boltzmann equation are

1

2
(1 + 𝜖)𝜑(𝑥) −

∫︁
Γ

(𝐾1(𝑥, 𝑦)
𝜕𝜑(𝑦)

𝜕𝑣
+ 𝐾2(𝑥, 𝑦)𝜑(𝑦))𝑑𝑆𝑦 = 𝑆1(𝑥)

1

2
(1 +

1

𝜖
)
𝜕𝜑(𝑥)

𝜕𝑣
−
∫︁
Γ

(𝐾3(𝑥, 𝑦)
𝜕𝜑(𝑦)

𝜕𝑣
+ 𝐾4(𝑥, 𝑦)𝜑(𝑦))𝑑𝑆𝑦 = 𝑆2(𝑥), 𝑥 ∈ Γ

2.2. Using APBS 17

http://www.sciencedirect.com/science/article/pii/S0021999113002404
http://www.sciencedirect.com/science/article/pii/S0021999109000916
https://www.electrostaticszone.eu/downloads

APBS, Release 3.0.0

for the surface potential 𝜑, and its normal derivative 𝜕𝜑
𝜕𝑣 on the surface :math‘Gamma‘. The kernels 𝐾1,2,3,4 are linear

combinations of the Coulomb and screened Coulomb potentials:

𝐺0(𝑥, 𝑦) =
1

4𝜋|𝑥− 𝑦|

𝐺𝜅(𝑥, 𝑦) =
𝑒−𝜅|𝑥−𝑦|

4𝜋|𝑥− 𝑦|

and their first and second derivatives.

The sums in the discretized form of the integral equations above have the form of N-body interactions,

𝑉𝑖 =

𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

𝑞𝑗𝐺(𝑥𝑖, 𝑥𝑗), 𝑖 = 1, . . . , 𝑁

where 𝐺 is the screened Coulomb potential kernel, 𝑥𝑖, 𝑥𝑗 are the centroids of the triangles, and 𝑞𝑗 is the charge at 𝑥𝑗 .
The particles (centroids of the triangles) are divided into a hierarchy of clusters having a tree structure. The treecode
replaces the 𝒪(𝑁2) particle-particle interactions by 𝒪(𝑁 log𝑁) particle-cluster interactions and TABI-PB utilizes
this feature efficiently.

Output

The TABI-PB code produces an output file called surface_potential.dat containing:

• number of nodes, number of triangles

• node index, vertices, normal vector, surface potential (kJ mol-1 ec
-1), surface potential normal derivatives (kJ

mol-1 ec
-1 A-1)

• connectivity data for surface triangulation

The format is given below:

num_node num_triangle
node_index x y z norm_x norm_y norm_z phi norm_phi
(et cetera)
node_index1 node_index2 node_index3

The TABI-PB code prints the free energy of solvation and Coulombic free energy in kJ/mol, along with some other
information such as CPU time and the GMRES residuals at each step.

Additionally, TABI-PB can optionally output a VTK polygonal data file containing color mappable potentials and
normal derivatives of potentials on the faces and vertices of the mesh. The VTK file can be visualized using ParaView.

fe-manual

Manually-configured adaptive finite element Poisson-Boltzmann calculations.

This is a single-point PBE calculation performed by our adaptive finite element PBE solver. It requires that APBS
be linked to the Michael Holst group FEtk finite element library during compilation. The finite element solver uses a
“solve-estimate-refine” cycle. Specifically, starting from an initial mesh, it performs the following iteration:

1. solve the problem with the current mesh

2. estimate the error in the solution

3. adaptively refine the mesh to reduce the error

18 Chapter 2. Contents

https://www.paraview.org/
http://www.fetk.org

APBS, Release 3.0.0

This iteration is repeated until a global error tolerance is reached.

Keywords for this calculation type include:

akeyPRE

Specifies how the initial finite element mesh should be constructed (from refinement of a very coarse 8-tetrahedron
mesh prior to the solve-estimate-refine iteration in fe-manual finite element calculations. The syntax is:

akeyPRE {key}

where key is a text string that specifies the method used to guide initial refinement and takes one of the values:

unif Uniform refinement

geom Geometry-based refinement at molecular surfaces and charges

akeySOLVE

Specifies how the the finite element mesh should be adaptively subdivided during the solve-estimate-refine iterations
of a fe-manual finite element calculation. The syntax is:

akeySOLVE {key}

where key is a text string that specifies the method used to guide adaptive refinement:

resi Residual-based a posteriori refinement.

bcfl

Specifies the type of boundary conditions used to solve the Poisson-Boltzmann equation. The syntax is:

bcfl {flag}

where flag is a text string that identifies the type of conditions to be used.

zero “Zero” boundary condition. Dirichlet conditions where the potential at the boundary is set to zero. This
condition is not commonly used and can result in large errors if used inappropriately.

sdh “Single Debye-Hückel” boundary condition. Dirichlet condition where the potential at the boundary is set to the
values prescribed by a Debye-Hückel model for a single sphere with a point charge, dipole, and quadrupole. The
sphere radius in this model is set to the radius of the biomolecule and the sphere charge, dipole, and quadrupole
are set to the total moments of the protein. This condition works best when the boundary is sufficiently far from
the biomolecule.

mdh “Multiple Debye-Hückel” boundary condition. Dirichlet condition where the potential at the boundary is set to
the values prescribed by a Debye-Hückel model for a multiple, non-interacting spheres with a point charges.
The radii of the non-interacting spheres are set to the atomic radii of and the sphere charges are set to the
atomic charges. This condition works better than sdh for closer boundaries but can be very slow for large
biomolecules.

focus “Focusing” boundary condition. Dirichlet condition where the potential at the boundary is set to the values
computed by the previous (usually lower-resolution) PB calculation. This is only used in sequential focusing
performed manually in mg-manual calculations. All of the boundary points should lie within the domain of the
previous calculation for best accuracy; if any boundary points lie outside, their values are computed using single
Debye-Hückel boundary conditions (see above).

2.2. Using APBS 19

APBS, Release 3.0.0

map Specifying map allows a previously calculated potential map to be used in a new focusing calculation. A typical
scenario is using the same coarse grid for multiple focusing calculations. A potential map can be written once
from a coarse grid calculation, then used in subsequent runs to bypass the need to recalculate the coarse grid.
See the READ keyword pot (see READ input file section) and the attached example files for its use.

calcenergy

This optional keyword controls energy output from an apolar solvation calculation. The syntax is:

calcenergy <flag>

where flag is a string denoting what type of energy to calculate:

no (Deprecated) Don’t calculate any energies.

total Calculate and return total apolar energy for the entire molecule.

comps Calculate and return total apolar energy for the entire molecule as well as the energy components for each
atom.

Note: This option must be used consistently (with the same flag value) for all calculations that will appear in
subsequent PRINT input file section statements.

calcforce

This optional keyword controls energy output from an apolar solvation calculation. The syntax is:

calcforce {flag}

where flag is a text string that specifies the types of force values to be returned:

no (Deprecated) don’t calculate any forces.

total Calculate and return total electrostatic and apolar forces for the entire molecule.

comps Calculate and return total electrostatic and apolar forces for the entire molecule as well as force components
for each atom.

The possible outputs from calcforce are:

tot {n} total force for atom n

qf {n} fixed charge force for atom n

db {n} dielectric boundary force for atom n

ib {n} ionic boundary force for atom n

The values will be printed in three columns which correspond to the x, y, and z components of the force vector.

Note: This option must be used consistently (with the same flag value) for all calculations that will appear in
subsequent PRINT input file section statements.

20 Chapter 2. Contents

APBS, Release 3.0.0

chgm

Specify the method by which the biomolecular point charges (i.e., Dirac delta functions) by which charges are mapped
to the grid for a multigrid (mg-manual, mg-auto, mg-para) Poisson-Boltzmann calculation. As we are attempting to
model delta functions, the support (domain) of these discretized charge distributions is always strongly dependent on
the grid spacing. The syntax is:

chgm {flag}

flag is a text string that specifies the type of discretization:

spl0 Traditional trilinear interpolation (linear splines). The charge is mapped onto the nearest-neighbor grid points.
Resulting potentials are very sensitive to grid spacing, length, and position.

spl2 Cubic B-spline discretization. The charge is mapped onto the nearest- and next-nearest-neighbor grid points.
Resulting potentials are somewhat less sensitive (than spl0) to grid spacing, length, and position.

spl4 Quintic B-spline discretization. Similar to spl2, except the charge/multipole is additionally mapped to include
next-next-nearest neighbors (125 grid points receive charge density).

domainLength

Specify the rectangular finite element mesh domain lengths for fe-manual finite element calculations. This length may
be different in each direction. If the usemesh keyword is included, then this command is ignored. The syntax is:

domainLength {xlen ylen zlen}

where the parameters xlen ylen zlen are floating point numbers that specify the mesh lengths in the x-, y-, and
z-directions (respectively) in units of Å.

ekey

Specify the method used to determine the error tolerance in the solve-estimate-refine iterations of the finite element
solver (fe-manual). The syntax is:

ekey { flag }

where flag is a text string that determines the method for error calculation.

simp Per-simplex error limit

global Global (whole domain) error limit

frac Fraction of simplices you’d like to see refined at each iteration

etol

Specifies the tolerance for iterations of the partial differntial equation solvers: The syntax is:

etol { tol }

where tol is the (floating point) numerical value for the error tolerance.

For finite difference solvers, this keyword is optional and is intended for mg-manual, mg-auto, and mg-para calculation
types.

2.2. Using APBS 21

APBS, Release 3.0.0

For finite element solvers, this keyword specifies the tolerance for error-based adaptive refinement during the solve-
estimate-refine iterations of the finite element solver (fe-manual), where tol is the (floating point) numerical value
for the error tolerance.

lpbe

Specifies that the linearized Poisson-Boltzmann equation should be solved.

Note: The options lpbe, npbe, lrpbe, nrpbe are mutually exclusive.

lrpbe

Specifies that the linear form of the regularized Poisson-Boltzmann equation (RPBE) should be solved. The regu-
larized PBE equation replaces the point charge distribution with the corresponding Green’s function. As a result of
this replacement, the solution corresponds to the reaction field instead of the total potential; the total potential can be
recovered by adding the appropriate Coulombic terms to the solution. Likewise, this equation immediately yields the
solvation energy without the need for reference calculations.

Note: The options lpbe, npbe, lrpbe, nrpbe are mutually exclusive.

maxsolve

Specify the number of times to perform the solve-estimate-refine iteration of the finite element solver (fe-manual).
The syntax is:

maxsolve { num }

where num is an integer indicating the desired maximum number of iterations.

maxvert

Specify the maximum number of vertices to allow during solve-estimate-refine cycle of finite element solver (fe-
manual). This places a limit on the memory that can be used by the solver. The syntax is:

maxvert { num }

where num is an integer indicating the maximum number of vertices.

npbe

Specifies that the nonlinear (full) Poisson-Boltzmann equation should be solved.

Note: The options lpbe, npbe, lrpbe, nrpbe are mutually exclusive.

22 Chapter 2. Contents

APBS, Release 3.0.0

nrpbe

Specifies that the nonlinear form of the regularized Poisson-Boltzmann equation (RPBE) should be solved. The
regularized PBE equation replaces the point charge distribution with the corresponding Green’s function. As a result
of this replacement, the solution corresponds to the reaction field instead of the total potential; the total potential can
be recovered by adding the appropriate Coulombic terms to the solution. Likewise, this equation immediately yields
the solvation energy without the need for reference calculations.

Note: The options lpbe, npbe, lrpbe, nrpbe are mutually exclusive.

Note: This functionality is only available with FEM-based solvers.

srfm (elec)

Specify the model used to construct the dielectric and ion-accessibility coefficients. The syntax for this command is:

srfm {flag}

where flag is a string describing the coefficient model:

mol The dielectric coefficient is defined based on a molecular surface definition. The problem domain is divided into
two spaces. The “free volume” space is defined by the union of solvent-sized spheres (see srad) which do not
overlap with biomolecular atoms. This free volume is assigned bulk solvent dielectric values. The complement
of this space is assigned biomolecular dielectric values. With a non-zero solvent radius (srad), this choice of
coefficient corresponds to the traditional definition used for PB calculations. When the solvent radius is set to
zero, this corresponds to a van der Waals surface definition. The ion-accessibility coefficient is defined by an
“inflated” van der Waals model. Specifically, the radius of each biomolecular atom is increased by the radius
of the ion species (as specified with the ion keyword). The problem domain is then divided into two spaces.
The space inside the union of these inflated atomic spheres is assigned an ion-accessibility value of 0; the
complement space is assigned bulk ion accessibility values.

smol The dielectric and ion-accessibility coefficients are defined as for mol (see above). However, they are then
“smoothed” by a 9-point harmonic averaging to somewhat reduce sensitivity to the grid setup as described by
Bruccoleri et al. J Comput Chem 18 268-276, 1997 (10.1007/s00214-007-0397-0).

spl2 The dielectric and ion-accessibility coefficients are defined by a cubic-spline surface as described by Im et
al, Comp Phys Commun 111 (1-3) 59-75, 1998 (10.1016/S0010-4655(98)00016-2). The width of the dielec-
tric interface is controlled by the swin parameter. These spline-based surface definitions are very stable with
respect to grid parameters and therefore ideal for calculating forces. However, they require substantial reparam-
eterization of the force field; interested users should consult Nina et al, Biophys Chem 78 (1-2) 89-96, 1999
(10.1016/S0301-4622(98)00236-1). Additionally, these surfaces can generate unphysical results with non-zero
ionic strengths; this is an on-going area of development.

spl4 The dielectric and ion-accessibility coefficients are defined by a 7th order polynomial. This surface definition
has characteristics similar to spl2, but provides higher order continuity necessary for stable force calculations
with atomic multipole force fields (up to quadrupole).

swin

Specify the size of the support (i.e., the rate of change) for spline-based surface definitions (see srfm (elec)). The
syntax is:

2.2. Using APBS 23

http://dx.doi.org/10.1007/s00214-007-0397-0
https://doi.org/10.1016/S0010-4655(98)00016-2
http://dx.doi.org/10.1016/S0301-4622(98)00236-1

APBS, Release 3.0.0

swin {win}

where win is a floating point number for the spline window width (in Å). Usually 0.3 Å.</p> Note that, per the
analysis of Nina, Im, and Roux (article), the force field parameters (radii) generally need to be adjusted if the
spline window is changed.

targetNum

Specify the target number of vertices in the initial finite element mesh for fe-manual calculations. The syntax is:

targetNum { num }

where num is an integer denoting the target number of vertices in initial mesh. Initial refinement will continue until
this number is reached or the the longest edge of every simplex is below targetRes.

targetRes

Specify the target resolution of the simplices in a finite element mesh (fe-manual). The syntax is:

targetRes { res }

where res is a floating point number denoting the target resolution for longest edges of simplices in mesh (in Å).
Refinement will continue until the longest edge of every simplex is below this value or the number of vertices reaches
targetNum.

usemesh

Specify the external finite element mesh to be used in the finite element Poisson-Boltzmann calculation (fe-manual).
These must have been input via an earlier READ mesh statement (see READ input file section). The syntax is:

usemesh {id}

where id is an integer ID specifying the particular map read in with READ input file section. These IDs are assigned
sequentially, starting from 1, and incremented independently for each mesh read by APBS.

write

This controls the output of scalar data calculated during the Poisson-Boltzmann run. This keyword can be repeated
several times to provide various types of data output from APBS. The syntax is:

write {type} {format} {stem}

type A string indicating what type of data to output:</p>

charge Write out the biomolecular charge distribution in units of ec (electron charge) per Å3 (multigrid only).

pot Write out the electrostatic potential over the entire problem domain in units of kb T ec
-1 (multigrid and

finite element), where

kb Boltzmann’s constant: 1.3806504 × 1023 J K-1

T The temperature of your calculation in K

24 Chapter 2. Contents

http://dx.doi.org/10.1016/S0301-4622(98)00236-1

APBS, Release 3.0.0

ec is the charge of an electron: 1.60217646 × 10-19 C

As an example, if you ran your calculation at 300 K, then the potential would be written out as multiples
of kb T ec

-1 = (1.3806504 × 1023 J K-1) × (300 K) × (1.60217646 × 10-19 C)-1 = (4.1419512 × 10-21 J) ×
(6.241509752 × 1018 C-1) = 25.85202 mV

atompot Write out the electrostatic potential at each atom location in units of kb T ec
-1 (multigrid and finite

element).

smol Write out the solvent accessibility defined by the molecular surface definition (see srfm (elec) smol).
Values are unitless and range from 0 (inaccessible) to 1 (accessible). (multigrid and finite element).

sspl Write out the spline-based solvent accessibility (see srfm (elec) spl2). Values are unitless and range
from 0 (inaccessible) to 1 (accessible) (multigrid and finite element)

vdw Write out the van der Waals-based solvent accessibility (see srfm (elec) smol with srad 0.0). Values are
unitless and range from 0 (inaccessible) to 1 (accessible). (multigrid and finite element)

ivdw Write out the inflated van der Waals-based ion accessibility (see srfm (elec) smol). Values are unitless
and range from 0 (inaccessible) to 1 (accessible). (multigrid and finite element)

lap Write out the Laplacian of the potential ∇2𝜑 in units of kB T ec
-1 Å-2 (multigrid only).

edens Write out the “energy density” −∇ · 𝜖∇𝜑 in units of kB T ec
-1 Å-2 (multigrid only).

ndens Write out the total mobile ion number density for all ion species in units of M (multigrid only). The out-
put is calculated according to the formula (for nonlinear PB calculations): 𝜌(𝑥) =

∑︀𝑁
𝑖 𝜌𝑖𝑒

−𝑞𝑖𝜑(𝑥)−𝑉𝑖(𝑥),
where N is the number of ion species, 𝜌𝑖 is the bulk density of ion species i, 𝑞𝑖 is the charge of ion species
i, 𝜑(𝑥) is the electrostatic potential, and 𝑉𝑖 is the solute-ion interaction potential for species i.

qdens Write out the total mobile ion charge density for all ion species in units of ec M (multigrid
only). The output is calculated according to the formula (for nonlinear PB calculations): 𝜌(𝑥) =∑︀𝑁

𝑖 𝜌𝑖𝑞𝑖𝑒
−𝑞𝑖𝜑(𝑥)−𝑉𝑖(𝑥), where N is the number of ion species, 𝜌𝑖 is the bulk density of ion species i,

𝑞𝑖 is the charge of ion species i, 𝜑(𝑥) is the electrostatic potential, and 𝑉𝑖 is the solute-ion interaction
potential for species i.

dielx or diely or dielz Write out the dielectric map shifted by 1/2 grid spacing in the {x, y, z}-direction
(see READ input file section diel). The values are unitless (multigrid only).

format A string that specifies the format for writing out the data:

dx Write out data in OpenDX scalar data format. This is the preferred format for APBS I/O. (multigrid and
finite element).

avs Write out data in AVS UCD format. (finite element only).

uhbd Write out data in UHBD scalar data format. (multigrid only).

gz Write out OpenDX scalar data format in gzipped (zlib) compatible format. Appends .dx.gz to the filename.

flat Write out data as a plain text file. (multigrid and finite element).

stem A string that specifies the path for the output; files are written to stem.XYZ, where XYZ is determined by
the file format (and processor rank for parallel calculations). If the pathname contains spaces, then it must be
surrounded by double quotes.

Note: The finite element methods are currently most useful for a select set of problems which can benefit from
adaptive refinement of the solution. Furthermore, this implementation is experimental. In general, the sequential and
parallel focusing multigrid methods offer the most efficient solution of the PBE for most systems.

2.2. Using APBS 25

APBS, Release 3.0.0

geoflow-auto

To increase the accuracy of our implicit solvent modeling, we have implemented a differential geometry based geomet-
ric flow solvation model (Thomas, 2013). In this model, polar and nonpolar solvation free energies are coupled and the
solvent-solute boundary is determined in a self-consistent manner. Relevant references are provided in Recommended
reading. This section provides a brief overview of the method.

The solutions for the electrostatic potential 𝜑 and the characteristic function 𝑆 (related to the solvent density) are
obtained by minimizing a free energy functional that includes both polar and nonpolar solvation energy terms. Min-
imization of the functional with respect to 𝜑 gives the Poisson-Boltzmann equation with a dielectric coefficient 𝜖 has
the solute value 𝜖𝑚 where 𝑆 = 1 and the solvent value 𝜖𝑠 where 𝑆 = 0. Minimization of the free energy functional
with respect to 𝑆 gives

−∇ ·
(︂
𝛾

∇𝑆

‖ ∇𝑆 ‖

)︂
+ 𝑝− 𝜌0𝑈

𝑎𝑡𝑡 + 𝜌𝑚𝜑− 1

2
𝜖𝑚 | ∇𝜑 |2 +

1

2
𝜖𝑠 | ∇𝜑 |2= 0

where 𝛾 is the microscopic surface tension, 𝑝 is the hydrostatic pressure, and 𝑈𝑎𝑡𝑡 is the attractive portion of the van
der Waals dispersion interaction between the solute and the solvent.

Keywords for this calculation type include:

bconc

This keyword specifies the bulk solvent density. This coefficient multiplies the integral term of the apolar model
discussed above and can be set to zero to eliminate integral contributions to the apolar solvation calculation. The
syntax is:

bconc <density>

where density is a floating point number giving the bulk solvent density in Å-3.

gamma

This keyword specifies the surface tension coefficient for apolar solvation models.

gamma { value }

where value is a floating point number designating the surface tension in units of kcal mol-1 Å-2. This term can be
set to zero to eliminate the SASA (solvent-accessible surface area) contributions to the apolar solvation calculations.

Warning: Either this documentation is incorrect or the implementation needs to be changed to use kJ mol-1 Å-2

instead of kcal.

press

This term specifies the solvent pressure in kJ mol-1 Å-3. This coefficient multiplies the volume term of the apolar
model and can be set to zero to eliminate volume contributions to the apolar solvation calculation. The syntax is:

press {value}

26 Chapter 2. Contents

https://www.ncbi.nlm.nih.gov/pubmed/23212974

APBS, Release 3.0.0

where value is the floating point value of the pressure coefficient in kJ mol-1 Å-3.

Warning: Either this documentation is incorrect or the implementation needs to be changed to use kJ mol-1 Å-3

instead of kcal.

vdwdisp

Specify whether the attractive van der Waals contribution to the geometric flow potential is on or off.

vdwdisp { flag }

where flag is 0 (vdw off) or 1 (vdw on).

Warning: Although the ion and lpbe keywords will be accepted in the geoflow-auto calculation, the treatment
of salt is not currently implemented in APBS geometric flow.

mg-auto

Automatically configured finite difference Poisson-Boltzmann calculations.

This multigrid calculation automatically sets up and performs a string of single-point PBE calculations to “focus” on
a region of interest (binding site, etc.) in a system. It is basically an automated version of mg-manual designed for
easier use. Most users should use this version of ELEC.

Focusing is a method for solving the Poisson-Boltzmann equation in a finite difference setting. Some of the earliest
references to this method are from Gilson and Honig1. The method starts by solving the equation on a coarse grid
(i.e., few grid points) with large dimensions (i.e., grid lengths). The solution on this coarse grid is then used to set the
Dirichlet boundary condition values for a smaller problem domain – and therefore a finer grid – surrounding the region
of interest. The finer grid spacing in the smaller problem domain often provides greater accuracy in the solution.

The following keywords are present in mg-auto ELEC blocks; all keywords are required unless otherwise noted.

Note: During focusing calculations, you may encounter the message “WARNING! Unusually large potential values
detected on the focusing boundary!” for some highly charged systems based on location of the focusing boundary.
First, you should determine if you received any other warning or error messages as part of this calculation, particularly
those referring to exceeded number of iterations or error tolerance (etol). Next, you should check if the calculation
converged to a reasonable answer. In particular, you should check sensitivity to the grid spacing by making small
changes to the grid lengths (via the fglen parameter) and see if the changes in energies are correspondingly small. If
so, then this warning can be safely ignored.

cgcent

This keyword controls electrostatic energy output from a Poisson-Boltzmann calculation The syntax is:

cgcent { mol id | xcent ycent zcent }

1 Gilson MK and Honig BH, Calculation of electrostatic potentials in an enzyme active site. Nature, 1987. 330(6143): p. 84-6.
DOI:10.1038/330084a0

2.2. Using APBS 27

http://dx.doi.org/10.1038/330084a0

APBS, Release 3.0.0

The arguments for this keyword are either

mol id Center the grid on molecule with integer ID id; as assigned in the READ section with a READ mol com-
mand (see READ input file section)

or

xcent ycent zcent Center the grid on the (floating point) coordinates (in Å) at which the grid is centered.
Based on the PDB coordinate frame.

cglen

Specify the length of the coarse grid (in a focusing calculation) for an automatic multigrid (mg-auto, mg-para) Poisson-
Boltzmann calculation. This may be different in each direction.

cglen {xlen ylen zlen}

This is the starting mesh, so it should be large enough to complete enclose the biomolecule and ensure that the chosen
boundary condition (see bcfl) is appropriate.

xlen ylen zlen Grid lengths (floating point numbers) in the x-, y-, and z-directions in Å.

dime

Specifies the number of grid points per processor for grid-based discretization. The syntax is:

dime {nx ny nz}

For mg-manual calculations, the arguments are dependent on the choice of nlev by the formula: 𝑛 = 𝑐2𝑙+1 + 1 where
n is the dime argument, c is a non-zero integer, l is the nlev value. The most common values for grid dimensions
are 65, 97, 129, and 161 (they can be different in each direction); these are all compatible with a nlev value of 4.
If you happen to pick a “bad” value for the dimensions (i.e., mismatch with nlev), the APBS code will adjust the
specified dime downwards to more appropriate values. This means that “bad” values will typically result in lower
resolution/accuracy calculations! The arguments for this keyword are:

nx ny nz The (integer) number of grid points in the x-, y-, and z-directions, respectively.

Note: dime should be interpreted as the number of grid points per processor for all calculations, including mg-
para. This interpretation helps manage the amount of memory per-processor - generally the limiting resource for most
calculations.

fgcent

Specify the center of the fine grid (in a focusing calculation) based on a molecule’s center or absolute coordinates for
mg-para and mg-auto multigrid calculations. The syntax is:

where a user can specify either

mol {id} Center the grid on molecule with integer ID id; as assigned in the READ section (see READ input file
section) of the input file. Molecule IDs are assigned in the order they are read, starting at 1.

or the user can specify

xcent ycent zcent Center the grids on the coordinates (floating point numbers in Å) at which the grid is cen-
tered. Based on the input molecule PDB coordinate frame.

28 Chapter 2. Contents

APBS, Release 3.0.0

fglen

Specifies the fine mesh domain lengths in a multigrid focusing calculation (mg-para or mg-auto); this may be different
in each direction. The syntax is:

fglen {xlen ylen zlen}

This should enclose the region of interest in the molecule. The arguments to this command are:

xlen ylen zlen Grid lengths (floating point numbers) in the x-, y-, and z-directions in Å.

usemap

Specify pre-calculated coefficient maps to be used in the Poisson-Boltzmann calculation. These must have been input
via an earlier READ statement (see READ input file section).

The syntax for this command is:

usemap {type} {id}

where the mandatory keywords are:

type A string that specifies the type of pre-calculated map to be read in:

diel Dielectric function map (as read by READ input file section diel); this causes the pdie, sdie, srad,
swin, and srfm (elec) parameters and the radii of the biomolecular atoms to be ignored when computing
dielectric maps for the Poisson-Boltzmann equation. Note that the pdie and sdie values are still used for
some boundary condition calculations as specified by bcfl.

kappa Mobile ion-accessibility function map (as read by READ input file section kappa); this causes the swin
and srfm (elec) parameters and the radii of the biomolecular atoms to be ignored when computing mobile
ion values for the Poisson-Boltzmann equation. The ion parameter is not ignored and will still be used.

charge Charge distribution map (as read by READ input file section charge); this causes the chgm parameter
and the charges of the biomolecular atoms to be ignored when assembling the fixed charge distribution for
the Poisson-Boltzmann equation.

pot Potential map (as read by READ input file section pot); this option requires setting bcfl to map.

id As described in the READ command documentation (see READ input file section), this integer ID specifies the
particular map read in with READ. These IDs are assigned sequentially, starting from 1, and incremented
independently for each map type read by APBS. In other words, a calculation that uses two PQR files, one
parameter file, three charge maps, and four dielectric maps would have PQR files with IDs 1-2, a parameter file
with ID 1, charge maps with IDs 1-3, and dielectric maps with IDs 1-4.

writemat

This controls the output of the mathematical operators in the Poisson-Boltzmann equation as matrices in Harwell-
Boeing matrix format (multigrid only). The syntax is:

writemat {type} {stem}

where

type A string that indicates what type of operator to output.

poisson Write out the Poisson operator −∇ · 𝜖∇.

2.2. Using APBS 29

APBS, Release 3.0.0

stem A string that specifies the path for the output.

mg-manual

Manually-configured finite differnece multigrid Poisson-Boltzmann calculations.

This is a standard single-point multigrid PBE calculation without focusing or additional refinement. The mg-manual
calculation offers the most control of parameters to the user. Several of these calculations can be strung together to
perform focusing calculations by judicious choice of the bcfl flag; however, the setup of the focusing is not automated
as it is in mg-auto and mg-para calculations and therefore this command should primarily be used by more experienced
users.

gcent

Specify the center of the grid based on a molecule’s center or absolute coordinates mg-manual multigrid calculations.
The syntax is:

fgcent { mol id | xcent ycent zcent }

where a user can specify either

mol {id} Center the grid on molecule with integer ID id; as assigned in the READ section (see READ input file
section) of the input file. Molecule IDs are assigned in the order they are read, starting at 1.

or the user can specify

xcent ycent zcent Center the grids on the coordinates (floating point numbers in Å) at which the grid is cen-
tered. Based on the input molecule PDB coordinate frame.

glen

Specify the mesh domain lengths for multigrid mg-manual calculations. These lengths may be different in each
direction. The syntax is:

glen {xlen ylen zlen}

where `xlen ylen zlen are the (floating point) grid lengths in the x-, y-, and z-directions (respectively) in Å.

grid

Specify the grid spacings for multigrid and volume integral calculations. This value may be different in each direction.
The syntax is:

grid {hx hy hz}

where hx hy hz are the (floating point) grid spacings in the x-, y-, and z-directions (respectively) in Å.

nlev

Specify the depth of the multilevel hierarchy used in the mg-manual multigrid solver. See dime for a discussion of
how nlev relates to grid dimensions. The syntax is:

30 Chapter 2. Contents

APBS, Release 3.0.0

nlev {lev}

where lev is an integer indicating the desired depth of the multigrid hierarchy.

mg-para

Automatically-configured parallel focusing multigrid Poisson-Boltzmann calculations.

This calculation closely resembles mg-auto in syntax. However, it is designed to perform electrostatics calculations
on systems in a parallel focusing fashion.

async

An optional keyword to perform an asynchronous parallel focusing Poisson-Boltzmann equation. The syntax is

async {rank}

where rank is the integer ID of the particular processor to masquerade as. Processor IDs range from 0 to N-1, where
N is the total number of processors in the run (see pdime). Processor IDs are related to their position in the overall grid
by 𝑝 = 𝑛𝑥𝑛𝑦𝑘 + 𝑛𝑥𝑗 + 𝑖 where 𝑛𝑥 is the number of processors in the x-direction, 𝑛𝑦 is the number of processors in
the y-direction, 𝑛𝑧 is the number of processors in the z-direction, 𝑖 is the index of the processor in the x-direction, 𝑗 is
the index of the processor in the y-direction, 𝑘 is the index of the processor in the z-direction, and 𝑝 is the overall rank
of the processor.

ofrac

Specify the amount of overlap to include between the individual processors meshes in a parallel focusing calculation
(mg-para). The syntax is:

ofrac {frac}

where frac is a floating point value between 0.0 and 1.0 denoting the amount of overlap between processors. Em-
pirical evidence suggests that an value of 0.1 is sufficient to generate stable energies. However, this value may not be
sufficient to generate stable forces and/or good quality isocontours. For example, the following table illustrates the
change in energies and visual artifacts in isocontours as a function of ofrac values for a small peptide (2PHK:B).

Table 1: Sensitivity of 2PHK:B solvation energy calculations to ofrac
values.
ofrac value Energy (kJ/mol) Visual artifact in isocontour?
0.05 342.79 No
0.06 342.00 No
0.07 341.12 Yes
0.08 341.14 Yes
0.09 342.02 Yes
0.10 340.84 Yes
0.11 339.67 No
0.12 341.10 No
0.13 341.10 No
0.14 341.32 No
0.15 341.54 No

2.2. Using APBS 31

APBS, Release 3.0.0

In general, larger <code>ofrac</code> values will reduce the parallel efficiency but will improve the accuracy.

For broad spatial support of the splines, every charge included in partition needs to be at least 1 grid space (chgm
spl0), 2 grid spaces (chgm spl2), or 3 grid spaces (chgm spl4) away from the partition boundary.

pdime

Specify the processor array to be used in a parallel focusing (mg-para) calculation. The syntax is:

pdime {npx npy npz}

where npx npy npz are the integer number of processors to be used in the x-, y- and z-directions of the system. The
product npx × npy × npz should be less than or equal to the total number of processors with which APBS was
invoked (usually via mpirun). If more processors are provided at invocation than actually used during the run, the extra
processors are not used in the calculation. The processors are tiled across the domain in a Cartesian fashion with a
specified amount of overlap (see ofrac) between each processor to ensure continuity of the solution. Each processor’s
subdomain will contain the number of grid points specified by the dime keyword. For broad spatial support of the
splines, every charge included in partition needs to be at least 1 grid space (chgm spl0), 2 grid spaces (chgm spl2),
or 3 grid spaces (chgm spl4) away from the partition boundary.

mg-dummy

Not a Poisson-Boltzmann calculation. Many calculations of surface and charge distribution properties which do not
require solution of the PBE.

This type of calculation allows users to write out dielectric, ion-accessibility, and charge distribution, and other types
of maps that depend solely on biomolecular geometry. Since these maps depend only on geometry, they can be written
out without actually solving the PB equation.

pbam-auto

PB-AM is an analytical solution to the linearized Poisson-Boltzmann equation for multiple spherical objects of arbi-
trary charge distribution in an ionic solution. More details on the method are available in Lotan, Head-Gordon (2006).
The physical calculations are uses to perform various actions on a system of molecules such as calculation of ener-
gies, forces, torques, electrostatic potentials, and Brownian dynamics schemes. This fast method coarse-grains all
molecules of the system into single spheres large enough to contain all molecule atoms.

The current implementation of PB-AM in APBS includes:

• Calculation of energies, forces and torques

• Calculation of electrostatic potentials

• Brownian dynamics simulations

Keywords for this calculation type include:

3dmap

Specify the name of the file into which the potential surface on the coarse-grain molecule surface will be printed.

3dmap {filename}

where filename is a string for the name of the file where a 3D grid will be printed out.

32 Chapter 2. Contents

http://pubs.acs.org/doi/full/10.1021/ct050263p

APBS, Release 3.0.0

diff

Specify the diffusion coefficients for each molecule in the system for a PB-(S)AM Brownian dynamics calculation.

diff {type} {dTrans} {dRot}

type a string indicating the molecule dynamics type

stat Stationary.

rot Object is fixed but rotates

move Object moves and rotates.

dTrans Translational diffusion coefficient in units of Å2 ps-1. Used only with the move keyword.

dRot Rotational diffusion coefficient. Used with the move and rot keywords.

Note: The order of these keywords is expected to be identical to the order of the molecules in the READ section.

dx

Specify the name of the file into which the potential will be printed.

dx {filename}

where filename is a string for the name of the file where an OpenDX file will be printed out.

grid2d

Specify the filename and location of a 2D cross sectional potential to be written to.

grid2d {filename} {axis} {axis_value}

filename String for the name of the 2D grid to be printed out

axis String of either x, y, or z, for which cartesian axis the grid will be computed along

axis_value A floating point number of the position along <code>axis</code> that will be used.

Note: Multiple 2D files can be printed out with 1 PB-AM run. Just specify them with more grid2d flags.

gridpts

Specify the number of gridpoints in each cartesian dimension.

gridpts {pts}

where pts is a integer number indicating the number of grid points.

2.2. Using APBS 33

APBS, Release 3.0.0

ntraj

Specify the number of Brownian Dynamic trajectories desired for the PB-(S)AM run.

ntraj {traj}

where traj is an integer of the number of desired trajectories.

pbc

This keyword is used to indicate if 3D periodic boundary conditions (PBCs) will be used in a PB-(S)AM calculation.
If used, a box length must also be specified, in Ångstroms.

pbc {boxlength}

where boxlength is the floating point value of the box length in Ångstroms.

Note: The box is centered at the origin (0, 0, 0). The code assumes a minimum image convention, so it only
includes the closest image of the neighboring molecules. For this convention to always be preserved, the periodic
box is assumed to be large enough such that the electrostatic forces are sufficiently attenuated beyond one boxlength.
Generally, the program assumes a mutual polarization cutoff of 100 Å for the mutual polarization, so if the boxlength
is shorter, the cutoff will be reduced to boxlength/2.

randorient

Flag to indicate that the molecules should have a random orientation in subsequent PB-(S)AM calculations.

runname

Specify the output name for the PB-(S)AM calculation.

..code-block:: bash

runname {name}

where name is a string indicating the prefix for all PB-(S)AM output files.

runtype

Indicate what type of calculation you would like to run with the PB-(S)AM model.

runtype {type}

where type is the type of calculation to be perfomed:

energyforce Compute and print out the interaction energies, forces and torques on each molecule.

electrostatics Print the electrostatic potential of points in the system.

dynamics Perform a Brownian Dynamics simulation, using forces and torques generated from the PB-(S)AM
model. The calculation of force and torque has been integrated into a Brownian dynamics scheme that is detailed
in Yap EH, Head-Gordon TL (2013) This option will generate a series of files of the form

34 Chapter 2. Contents

http://pubs.acs.org/doi/abs/10.1021/ct400048q

APBS, Release 3.0.0

dyn_toy.pqr The starting configuration of the system for the first trajectory

dyn_toy.stat A file that prints how each trajectory was terminated and the time that this occurred at.

dyn_toy_traj.xyz A VMD-readable xyz file for the trajectory of traj.

dyn_toy_traj.dat A file with positions, forces and torques for the system.

salt

Specify the monovalent salt concentration of the system, in molar. This is usually a value between 0.00 to 0.15.

salt {saltConc}

where saltConc is the floating point value of the monovalent salt concentration in molar.

term

Specify a termination condition for a PB-(S)AM Brownian dynamics trajectory. The syntax is:

term {type} {options}

where the options are determined by the type as follows:

contact {file} Termination based on molecular contact conditions. file is a string for the contact file file-
name. The contact file has a list formatted as follows: moltype1 at1 moltype2 at2 dist where
moltype1 and moltype2 are indices of the molecular types, at1 is the index of an atom from the first
molecular type, at2 is the index of an atom from the second molecular type, and dist is the maximum dis-
tance between the two atoms that defines the contact. pad is distance criterion that will be checked in the case
that the true atom contact distance may not be fulfilled.

Note: Sometimes these distances cannot be reached due to the assumption in this model that the molecule is
spherical. If this is the case, the atom positions are transformed to the molecule surface and surface points are
compared to the pad distance.

{pos} {val} {molecule} Specify a position termination condition for a given molecule. where pos is one
of the following options: x<=, x>=, y<=, y>=, z<=, z>=, r<=, r>=. val is the value along the
given axis to check against. molecule is the molecule index (1 based) according to the order of molecules
listed in the READ section that this condition applies to. This command can be understood as: “Terminate the
simulation when molecule molecule fulfills the condition pos val”.

time {val} Specify a time termination condition where val is a floating point number for the trajectory time limit
(in picoseconds).

termcombine

Combine multiple PB-(S)AM Brownian dynamics trajectory termination conditions (see term) via logic operators

termcombine {op}

where op is either the string or or and. If and is selected, all listed termination conditions must be fulfilled before
the simulation ends. If or is selected, only one needs to be satisfied to complete the simulation.

2.2. Using APBS 35

APBS, Release 3.0.0

units

Specify the units for energy/force/potential output in PB-(S)AM calculations:

units {flag}

where flag specifies the unit system:

kcalmol kcal/mol

jmol J/mol

kT kT

Force units will be energy units/Angstrom and potential units will be energy units/electron.

xyz

For each molecule in the system and for each trajectory, specify a xyz file for the starting position of that molecule.
The syntax is:

xyz {molecule_id} {filename}

molecule_id An integer (starting at 1) of the molecule index from the READ section

filename The name of the file for the xyz coordinates of the molecule center for a given trajectory. The trajectories
for a given molecule should be ordered sequentially in the ELEC section. </p>

Background information

PB-AM is an analytical solution to the linearized Poisson-Boltzmann equation for multiple spherical objects of arbi-
trary charge distribution in an ionic solution. The solution can be reduced to a simple system of equations as follows:

𝐴 = Γ · (∆ · 𝑇 ·𝐴 + 𝐸)

Where 𝐴(𝑖) represents the effective multipole expansion of the charge distributions of molecule 𝑖. 𝐸(𝑖) is the free
charge distribution of molecule 𝑖. Γ is a dielectric boundary-crossing operator, ∆ is a cavity polarization operator, 𝑇
an operator that transforms the multipole expansion to a local coordinate frame. 𝐴(𝑖) is solved for through an iterative
SCF method.

From the above formulation, computation of the interaction energy Ω(𝑖) for molecule 𝑖, is given as follows:

Ω(𝑖) =
1

𝜖𝑠

⟨
𝑁∑︁
𝑗 ̸=𝑖

𝑇 ·𝐴(𝑗), 𝐴(𝑖)

⟩

where ⟨𝑀,𝑁⟩ denotes the inner product. Forces can be obtained from

F(𝑖) = ∇𝑖Ω
(𝑖) =

1

𝜖𝑠

[︁
⟨∇𝑖 𝑇 ·𝐴(𝑖), 𝐴(𝑖)⟩ + ⟨𝑇 ·𝐴(𝑖),∇𝑖 𝐴

(𝑖)⟩
]︁

pbsam-auto

PB-SAM is a semi-analytical solution to the linearized Poisson-Boltzmann equation for multiple molecules of arbitrary
charge distribution in an ionic solution. The solution is an extension of the analytical method, leveraging fast-multipole
methods as well as boundary elements. Each molecule is coarse-grained as a system of overlapping spheres, whose

36 Chapter 2. Contents

APBS, Release 3.0.0

surface charges are represented by multipole expansions. For details on the method, please see Yap, Head-Gordon
(2010) and Yap, Head-Gordon (2013).

The current implementation of PB-SAM in APBS includes:

• Calculation of energies, forces and torques

• Calculation of electrostatic potentials

• Brownian dynamics simulations

Keywords for this calculation type include:

exp

This keyword can be used to load in the expansion matrices from files. They will have been previously generated, and
will be named molm.H, F.[s].exp (see pbam-auto for more information). The syntax is:

exp {prefix}

where prefix is the filename prefix molmsph. The H or F and s.bin will be appended during the program run.

imat

This keyword can be used to load in the surface integral matrices previously generated by PB-SAM named as
molmsphs.bin for molecule ID s and coarse-grained sphere s (see pbam-auto for more information). The syn-
tax is:

imat {prefix}

where prefix is the filename prefix molmsph. The s.bin will be appended during the program run.

surf

This keyword can be used to load in the MSMS vertex file for coarse-graining (see pbsam-auto) The syntax is:

surf {prefix}

where prefix refers to the filename :file:{prefix}.vert‘.

tolsp

This is an undocumented parameter from the PB-SAM code that does something with the coarseness of the molecule
representation. The PB-SAM authors recommend a value of 2.5.

Background information

PB-SAM is a semi-analytical solution to the linearized Poisson-Boltzmann equation for multiple molecules of ar-
bitrary charge distribution in an ionic solution. The solution is an extension of the analytical method, leveraging
Fast-Multipole methods as well as boundary elements. Each molecule is coarse-grained as a system of overlapping
spheres, whose surface charges are represented by the multipole expansions 𝐻(𝑖) and 𝐹 (𝑖). To solve for the potential,
the following interactions are considered:

2.2. Using APBS 37

http://pubs.acs.org/doi/abs/10.1021/ct100145f
http://pubs.acs.org/doi/abs/10.1021/ct100145f
http://pubs.acs.org/doi/abs/10.1021/ct400048q

APBS, Release 3.0.0

• Intra-molecular interactions between overlapping spheres are treated numerically

• Intra-molecular interactions between non-overlapping spheres are treated analytically

• Inter-molecular interactions between spheres on different molecules

With these interactions, the multipole expansions are solved with an iterative SCF method, briefly given as

𝐻(𝑖,𝑘) = 𝐼
(𝑖,𝑘)
𝐸 ·

(︁
𝐻(𝑖,𝑘) + 𝐹 (𝑖,𝑘) + 𝑇 ·𝐻(𝑗,𝑙)

)︁
𝐹 (𝑖,𝑘) = 𝐼

(𝑖,𝑘)
𝐸 ·

(︁
𝐻(𝑖,𝑘) + 𝐹 (𝑖,𝑘) + 𝑇 · 𝐹 (𝑗,𝑙)

)︁
Where 𝐻(𝑖) and :math‘F^{(i)}‘ are multipole expansions, 𝐼(𝑖,𝑘)𝐸 is the exposed surface integral matrix for sphere 𝑘 of
molecule 𝑖, and 𝑇 is an operator that transforms the multipole expansion to a local coordinate frame.

From the above formulation, computation of the interaction energy Ω(𝑖) for molecule 𝑖, is given as a sum of all the
interactions of spheres 𝑘 within it with all external spheres (in a simplified form) as follows:

Ω(𝑖) =
1

𝜖𝑠

⟨∑︁
𝑘 𝑖𝑛 𝑖

𝑁∑︁
𝑗 ̸=𝑖

∑︁
𝑙 𝑖𝑛 𝑗

𝑇 ·𝐻(𝑗,𝑙), 𝐻(𝑖,𝑘)

⟩

where ⟨𝑀,𝑁⟩ denotes the inner product.

When energy is computed, forces follow as:

F(𝑖) = ∇𝑖Ω
(𝑖) =

1

𝜖𝑠
[⟨∇𝑖 𝑇 ·𝐻(𝑗,𝑙), 𝐻(𝑖,𝑘)⟩ + ⟨𝑇 ·𝐻(𝑗,𝑙),∇𝑖 𝐻

(𝑖,𝑘)⟩

The method to calculate the torque is discussed in Yap, Head-Gordon (2013).

PB-SAM files

Vertex/surface file

As part of the coarse-graining process a definition of the molecular surface is necessary.

Coarse-grained PQR file

The coarse-graining process will produce a new PQR file mol#_cg.pqr that contains the original PQR concatenated
with coarse-graining spherical centers. The number # refers to the order the file was read during the READ input file
section statements.

IMAT: surface integral file

The surface integrals are computed for the boundary element part of PB-SAM. Their calculation can be quite time-
consuming, so the first time they are computed for a system, they are saved to the working directory with the name
molmsphs.bin`. The m in molmsphs.bin` is the ordered ID of the molecule from the PQR section. The s in
molmsphs.bin` refers to coarse-grained sphere s of the molecule.

38 Chapter 2. Contents

http://pubs.acs.org/doi/abs/10.1021/ct400048q

APBS, Release 3.0.0

Multipole expansion files

Much like the IMAT files, the expansion files are files generated from self-polarization that are useful and time-saving
methods for running a system of full-mutual polarziation on many molecules. If no expansion path is provided, the
program will calculate self-polarization for each type of molecule in the system and save files of the form molmH,F.
s.exp, where m is the molecule ID, H and F refer to the respective expansion (see above), and s is the coarse-grained
sphere number.

APOLAR input file section

This section is the main component for apolar solvation calculations in APBS runs. There may be several APOLAR
sections, operating on different molecules or using different parameters for multiple runs on the same molecule. The
syntax of this section is:

APOLAR [name id]
<keywords...>

END

The first (optional) argument is:

name <id>

where id is a unique string which can be assigned to the calculation to facilitate later operations (particularly in the
PRINT input file section statements). The keywords... describing the parameters of the apolar calculation are
discussed in more detail below:

dpos

This is the displacement used for finite-difference-based calculations of surface area derivatives. I know, this is a
terrible way to calculate surface area derivatives – we’re working on replacing it with an analytic version. In the
meantime, please use this parameter with caution. If anyone has code for a better method, please share!

The syntax is:

dpos {displacement}

where displacement is a floating point number indicating the finite difference displacement for force (surface area
derivative) calculations in units of Å.

Warning: This parameter is very dependent on sdens (see sdens); e.g., smaller values of dpos require larger
values of sdens.

gamma

This keyword specifies the surface tension coefficient for apolar solvation models.

gamma { value }

where value is a floating point number designating the surface tension in units of kJ mol-1 Å-2. This term can be set
to zero to eliminate the SASA contributions to the apolar solvation calculations.

2.2. Using APBS 39

APBS, Release 3.0.0

press

This term specifies the solvent pressure in kJ mol-1 Å-3. This coefficient multiplies the volume term of the apolar
model and can be set to zero to eliminate volume contributions to the apolar solvation calculation. The syntax is:

press {value}

where value is the floating point value of the pressure coefficient in kJ mol-1 Å-3.

srfm (apolar)

This keyword specifies the model used to construct the solvent-related surface and volume. The syntax is:

srfm {flag}

where flag is a string that specifies the model used for surface and volume. Acceptable values of flag include:

sacc Solvent-accessible (also called “probe-inflated”) surface and volume.

APBS apolar calculations follow the very generic framework described in Wagoner JA, Baker NA. Assessing implicit
models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc Natl Acad Sci USA,
103, 8331-8336, 2006. doi:10.1073/pnas.0600118103. ‘ Nonpolar solvation potentials of mean force (energies) are
calculated according to:

𝑊 (np)(𝑥) = 𝛾𝐴(𝑥) + 𝑝𝑉 (𝑥) + 𝜌

𝑁∑︁
𝑖=1

∫︁
Ω

𝑢
(att)
𝑖 (𝑥𝑖, 𝑦)𝜃(𝑥, 𝑦) d𝑦

and mean nonpolar solvation forces are calculated according to:

F
(np)
𝑖 (𝑥) = −𝛾

𝜕𝐴(𝑥)

𝜕𝑥𝑖
− 𝑝

∫︁
Γ𝑖(𝑥)

𝑦 − 𝑥𝑖

‖𝑦 − 𝑥𝑖‖
d𝑦 − 𝜌

𝑁∑︁
𝑖=1

∫︁
Ω

𝜕𝑢
(att)
𝑖 (𝑥𝑖, 𝑦)

𝜕𝑥𝑖
𝜃(𝑥, 𝑦) d𝑦

In these equations, 𝛾 is the repulsive (hard sphere) solvent surface tension (see gamma), A is the conformation-
dependent solute surface area (see srad and srfm (apolar) keywords), p is the repulsive (hard sphere) solvent pressure
(see press keyword), V is the conformation-dependent solute volume (see srad and srfm (apolar) keywords), 𝜌 (see
bconc keywords) is the bulk solvent density, and the integral involves the attractive portion (defined in a Weeks-
Chandler-Andersen sense) of the Lennard-Jones interactions between the solute and the solvent integrated over the
region of the problem domain outside the solute volume V. Lennard-Jones parameters are taken from APBS parameter
files as read in through an APBS input file READ statement (see READ input file section).

Note: The above expressions can easily be reduced to simpler apolar solvation formalisms by setting one or more of
the coefficients to zero through the keywords.

Warning: All APOLAR calculations require a parameter file which contains Lennard-Jones radius and well-
depth parameters for all the atoms in the solute PDB. This parameter file must also contain radius and well-depth
parameters for water (specifically: residue “WAT” and atom “OW”). Complete parameter files for protein and
nucleic acid parameters are not currently available; we prefer geometric flow calculations (coupled polar and
apolar components) rather than this model.

40 Chapter 2. Contents

http://dx.doi.org/10.1073/pnas.0600118103

APBS, Release 3.0.0

PRINT input file section

This is a very simple section that allows linear combinations of calculated properties to be written to standard output.
The syntax of this section is:

PRINT {what} [id op id op...] END

The first mandatory argument is what, the quantity to manipulate or print. This variable is a string that can assume
the following values:

elecEnergy Print electrostatic energies as calculated with an earlier ELEC input file section calcenergy command.

elecForce Print electrostatic forces as calculated with an earlier ELEC input file section calcforce command.

apolEnergy Print apolar energies as calculated with an earlier APOLAR input file section calcenergy command.

apolForce Print electrostatic forces as calculated with an earlier APOLAR input file section calcforce command.

The next arguments are a series of id op id op id op ... id commands where every id is immediately
followed by an op and another id.

id This is a variable string or integer denoting the ID of a particular ELEC input file section or APOLAR input file
section calculations. String values of id correspond to the optional “names” that can be assigned to ELEC input
file section or APOLAR input file section calculations. Integer values of id are assumed to corresponding to the
sequentially-assigned integer IDs for ELEC input file section or APOLAR input file section calculations. These
IDs start at 1 and are incremented (independently) for each new ELEC input file section or APOLAR input file
section calculation.

op Specify the arithmetic operation (+ for addition and - for subtraction) to be performed on the calculated quantities

For example:

Energy change due to binding
print energy complex - ligand - protein end
Energy change due to solvation
print energy solvated - reference end
Solvation energy change due to binding
print energy complex_solv - complex_ref - ligand_solv + ligand_ref - protein_solv +
→˓protein_ref end

2.2.4 Examples

APBS examples start with a PQR file (e.g., generated by PDB2PQR). Some of these examples can be performed
through the APBS-PDB2PQR web interface but most require a command-line APBS program.

Solvation energies

Solvation energies are usually decomposed into a free energy cycle as shown in the free energy cycle below. Note that
such solvation energies often performed on fixed conformations; as such, they are more correctly called “potentials
of mean force”. More details on using APBS for the polar and nonpolar portions of such a cycle are given in the
following sections.

Our model solvation free energy cycle illustrating several steps:

1. The solvation energy to be calculated.

2. Charging of the solute in solution (e.g., inhomogeneous dielectric, ions present).

2.2. Using APBS 41

https://github.com/Electrostatics/pdb2pqr
http://server.poissonboltzmann.org/

APBS, Release 3.0.0

3. Introduction of attractive solute-solvent dispersive interaction interactions (e.g., an integral of Weeks-Chandler-
Andersen interactions over the solvent-accessible volume).

4. Introduction of repulsive solute-solvent interaction (e.g., cavity formation).

5. Basically a null step although it could be used to offset unwanted energies added in Steps 3 and 4 above.

6. Charging of the solute in a vacuum or homogeneous dielectric environment in the absence of mobile ions.

Polar solvation

The full free energy cycle is usually decomposed into polar and nonpolar parts. The polar portion is usually represented
by the charging energies in Steps 2 and 6:

∆𝑝𝐺 = ∆2𝐺− ∆6𝐺

Energies returned from APBS electrostatics calculations are charging free energies. Therefore, to calculate the polar
contribution to the solvation free energy, we simply need to setup two calculations corresponding to Steps 2 and 6 in the
free energy cycle. Note that the electrostatic charging free energies returned by APBS include self-interaction terms.
These are the energies of a charge distribution interacting with itself. Such self-interaction energies are typically very
large and extremely sensitive to the problem discretization (grid spacing, location, etc.). Therefore, it is very important
that the two calculations in Steps 2 and 6 are performed with identical grid spacings, lengths, and centers, in order to
ensure appropriate matching (or “cancellation”) of self-energy terms.

Born ion

One of the canonical examples for polar solvation is the Born ion: a nonpolarizable sphere with a single charge at
its center surrounded by an aqueous medium. Consider the transfer of a non-polarizable ion between two dielectrics.
In the initial state, the dielectric coefficient inside and outside the ion is 𝜖_in, and in the final state, the dielectric
coefficient inside the ion is 𝜖_in and the dielectric coefficient outside the ion is 𝜖_in. In the absence of external ions,
the polar solvation energy of this transfer for this system is given by:

∆_𝑝𝐺_Born =
𝑞2

8𝜋𝜖_0𝑎

(︂
1

𝜖_out
− 1

𝜖_in

)︂

42 Chapter 2. Contents

APBS, Release 3.0.0

where q is the ion charge, a is the ion radius, and the two 𝜖 variables denote the two dielectric coefficients. This model
assumes zero ionic strength.

Note that, in the case of transferring an ion from vacuum, where 𝜖_in = 1, the expression becomes

∆_𝑝𝐺_Born =
𝑞2

8𝜋𝜖_0𝑎

(︂
1

𝜖_out
− 1

)︂
We can setup a PQR file for the Born ion for use with APBS with the contents:

REMARK This is an ion with a 3 A radius and a +1 e charge
ATOM 1 I ION 1 0.000 0.000 0.000 1.00 3.00

We’re interested in performing two APBS calculations for the charging free energies in homogeneous and heteroge-
neous dielectric coefficients. We’ll assume the internal dielectric coefficient is 1 (e.g., a vacuum) and the external
dielectric coefficient is 78.54 (e.g., water). For these settings, the polar Born ion solvation energy expression has the
form

∆𝑝𝐺Born = −691.85

(︂
𝑧2

𝑅

)︂
kJ A/mol

where z is the ion charge in electrons and R is the ion size in Å.

This solvation energy calculation can be setup in APBS with the following input file:

READ IN MOLECULES
read

mol pqr born.pqr
end
elec name solv # Electrostatics calculation on the solvated state
mg-manual # Specify the mode for APBS to run
dime 97 97 97 # The grid dimensions
nlev 4 # Multigrid level parameter
grid 0.33 0.33 0.33 # Grid spacing
gcent mol 1 # Center the grid on molecule 1
mol 1 # Perform the calculation on molecule 1
lpbe # Solve the linearized Poisson-Boltzmann equation
bcfl mdh # Use all multipole moments when calculating the potential
pdie 1.0 # Solute dielectric
sdie 78.54 # Solvent dielectric
chgm spl2 # Spline-based discretization of the delta functions
srfm mol # Molecular surface definition
srad 1.4 # Solvent probe radius (for molecular surface)
swin 0.3 # Solvent surface spline window (not used here)
sdens 10.0 # Sphere density for accessibility object
temp 298.15 # Temperature
calcenergy total # Calculate energies
calcforce no # Do not calculate forces

end
elec name ref # Calculate potential for reference (vacuum) state

mg-manual
dime 97 97 97
nlev 4
grid 0.33 0.33 0.33
gcent mol 1
mol 1
lpbe
bcfl mdh
pdie 1.0

(continues on next page)

2.2. Using APBS 43

APBS, Release 3.0.0

(continued from previous page)

sdie 1.0
chgm spl2
srfm mol
srad 1.4
swin 0.3
sdens 10.0
temp 298.15
calcenergy total
calcforce no

end
Calculate solvation energy
print energy solv - ref end
quit

Running this example with a recent version of APBS should give an answer of -229.59 kJ/mol which is in good
agreement with the -230.62 kJ/mol predicted by the analytic formula above.

Note: The Born example above can be easily generalized to other polar solvation energy calculations. For example,
ions could be added to the solv ELEC, dielectric constants could be modified, surface definitions could be changed
(in both ELEC sections!), or more complicated molecules could be examined. Many of the examples included with
APBS also demonstrate solvation energy calculations.

Note: As molecules get larger, it is important to examine the sensitivity of the calculated polar solvation energies
with respect to grid spacings and dimensions.

Apolar solvation

Referring back to the solvation free energy cycle, the nonpolar solvation free energy is usually represented by the
energy changes in Steps 3 through 5:

∆𝑛𝐺 = (∆3𝐺− ∆5𝐺) + ∆4𝐺

where Step 4 represents the energy of creating a cavity in solution and Steps 3-5 is the energy associated with dispersive
interactions between the solute and solvent. There are many possible choices for modeling this nonpolar solvation
process. APBS implements a relatively general model described by Wagoner and Baker (2006) and references therein.
The implementation and invocation of this model is described in more in the APOLAR input file section documentation.
Our basic model for the cavity creation term (Step 4) is motivated by scaled particle theory and has the form

∆4𝐺 = 𝑝𝑉 + 𝛾𝐴

where 𝑝 is the solvent pressure (press keyword), 𝑉 is the solute volume, 𝛾 is the solvent surface tension (gamma
keyword), and 𝐴 is the solute surface area.

Our basic model for the dispersion terms (Steps 3 and 5) follow a Weeks-Chandler-Anderson framework as proposed
by Levy et al (2002):

∆3𝐺− ∆5𝐺 =
−
𝜌

∫︁
𝜔

𝑢(𝑎𝑡𝑡)(𝑦)𝜃(𝑦)𝑑𝑦

where 𝜌 is the bulk solvent density (bconc keyword), Ω is the problem domain, 𝑢(att)(𝑦) is the attractive dispersion
interaction between the solute and the solvent at point y with dispersive Lennard-Jones parameters specified in APBS
parameter files, and 𝜃(𝑦) describes the solvent accessibility of point y.

44 Chapter 2. Contents

http://www.pnas.org/content/103/22/8331
http://onlinelibrary.wiley.com/doi/10.1002/jcc.10045/abstract

APBS, Release 3.0.0

The ability to independently adjust press, gamma, and bconc means that the general nonpolar solvation model pre-
sented above can be easily adapted to other popular nonpolar solvation models. For example, setting press and bconc
to zero yields a typical solvent-accessible surface area model.

Binding energies

In general, implicit solvent models are used to calculation the contribution of solvation to binding free energies. Ad-
ditional binding free energy contributions (molecular mechanics energies, entropic changes, etc.) must be calculated
separately and are not discussed in this tutorial.

Free energy cycle

Our framework for calculating solvation contributions to binding free energies is shown in the figure below:

This binding free energy cycle illustrates binding in terms of transfer free energies from a homogeneous dielectric
environment (where interactions are described by Coulomb’s law) to an inhomogeneous dielectric environment with
differing internal (green) and external (cyan) dielectric constants. The binding (dissociation) free energy is depicted in
Step 3. The binding free energy is given by

∆𝑏𝐺 = −∆3𝐺 = ∆4𝐺− ∆1𝐺− ∆2𝐺.

The following sections provide more detail on calculating individual terms of this equation.

Binding energy calculations

The most general method for calculating binding free energies divides the binding process up into solvation ∆∆𝑠𝐺
and Coulombic ∆∆𝑐𝐺 components:

∆∆𝑏𝐺 = ∆∆𝑠𝐺 + ∆∆𝑐𝐺.

As mentioned above, this framework neglects the numerous other mechanical and entropic components actually in-
volved in the binding process.

2.2. Using APBS 45

APBS, Release 3.0.0

Solvation contribution to binding

If we’re just interested in calculating the solvation contributions to binding (steps 4 and 2 in the binding free energy
cycle), then we simply need to follow the instructions from the Solvation energies section for the complex and isolated
components. The solvation energy contribution to the binding is then given by

∆∆𝑠𝐺 = ∆4𝐺− ∆2𝐺 = ∆𝑠𝐺𝑐𝑚𝑝𝑥 − ∆𝑠𝐺𝑚𝑜𝑙1 − ∆𝑠𝐺𝑚𝑜𝑙2

Coulombic contribution to binding

To complete the binding free energy cycle, we need to add intermolecular Coulombic contributions to the solvation
energy change upon binding to get the total electrostatic/solvent contribution to the binding free energy. In particular,
we’re interested in the change in Coulombic electrostatic energy upon binding, as given by

∆∆𝑐𝐺 = −∆1𝐺 = ∆𝑐𝐺𝑐𝑚𝑝𝑥 − ∆𝑐𝐺𝑚𝑜𝑙1 − ∆𝑐𝐺𝑚𝑜𝑙2

Each of the quantities in this equation is the sum of pairwise Coulombic interactions between all atoms in the molecule
(or complex) for a particular uniform dielectric. In order to combine these Coulombic binding energies with the solva-
tion energies described above, we need to make sure consistent dielectric constants are used. In particular, Coulombic
interactions should be calculated using the same uniform dielectric constant as the reference state of the solvation en-
ergy above. For example, if solvation energies are calculated for transferring a protein from a homogeneous medium
with uniform dielectric of to an inhomogeneous medium with internal dielectric 𝜖𝑢 and external dielectric 𝜖𝑣 , then
Coulombic energies should be calculated using a dielectric of 𝜖𝑢. The APBS accessory program tools/manip/
coulomb was created to help with the calculation of these analytic individual per-molecule Coulombic energies.
Given a PQR file as input, the tools/manip/coulomb program calculates Coulombic energies for a vacuum
dielectric (e.g., a uniform dielectric of 1). If the reference dielectric is 𝜖𝑢, then all energies returned by tools/
manip/coulomb need to be divided by 𝜖𝑢.

Other examples

Several binding energy examples are distributed in the examples directory with APBS.

Protein-RNA binding linked equilibria

Before reading this example, please review Caveats and sources of error for relevant caveats.

Introduction

This example is taken from a paper by García-García and Draper. Special thanks to David Draper who provided the
PDB files. This example explores the electrostatic contributions to the binding interaction between a 22-residue 𝛼-
helical peptide of protein 𝜆 with the “box B” RNA hairpin structure. In particular, this example uses nonlinear Poisson-
Boltzmann equation calculations to look at the non-specific screening effects of monovalent salt on the peptide-RNA
complex. García-García and Draper isolated the contribution of KCl concentration to the binding of the folded peptide
with the folded RNA hairpin and determined a fairly linear relationship between the binding free energy ∆𝑏𝐺 and the
logarithm of the KCl concentration which yields

𝜕∆𝑏𝐺

𝜕 log10[KCl]
= 6.0 ± 0.2 kcal/mol

This slope can be used to determine the number of KCl ions linked to the binding equilibrium through the expression

𝑛 = − 𝜕∆𝑏𝐺

𝑅𝑇𝜕 log10[KCl]
= −4.52 ± 0.08 kcal/mol

46 Chapter 2. Contents

http://dx.doi.org/10.1016/S0022-2836(03)00615-6
http://pmcb.jhu.edu/inactive%20pages/draper-profile.html

APBS, Release 3.0.0

where 𝑅𝑇 is the thermal energy, to determine 𝑛 = −4.4 ± 0.2 for the RNA-peptide binding equilibrium. 𝑅𝑇 is equal
to 𝑘𝑇 *𝑁𝑎 where 𝑘𝑇 is the product of the Boltzmann constant 𝑘 (equal to the gas constant 𝑅/𝑁𝑎), and the temperature
𝑇 (at STP it is 298.15 K) and 𝑁𝑎 is Avogadro’s constant. Thus 𝑅𝑇 is equal to

𝑅 (Joules/Kelvin) * 𝑇 (Kelvin) *𝑁𝑎 (mols) * 1 kJ/1000 J

which roughly equals

(1.38 × 10−23) × (6.022 × 1023) × (298.15)/(1000)

which is approximately 2.479 kJ/mol or 0.593 kcal/mol.

García-García and Draper used nonlinear Poisson-Boltzmann equation calculations to estimate the electrostatic con-
tributions to the binding free energy as a function of the monovalent salt concentration. As discussed elsewhere,
the Poisson-Boltzmann equation is only able to describe non-specific interactions of ions with solutes, including the
effects of ion size and charge but otherwise ignoring the important differences between ionic species. Interestingly
(and perhaps surprisingly), they find excellent agreement between the experimental binding energy dependence on
KCl and their Poisson-Boltzmann calculations with equivalent concentrations of monovalent ions. This agreement
strongly suggests that the binding of RNA and the peptide is primarily determined by electrostatic interactions. It also
suggests that the primary interaction of the KCl with this system is through non-specific screening interactions. The
García-García and Draper nonlinear Poisson-Boltzmann equation calculations gave:

𝜕∆𝑏𝐺

𝜕 log10[KCl]
= 5.9 ± 0.2 kcal/mol

and 𝑛 = −4.3 ± 0.2 for KCl linkage to the RNA-peptide binding equilibrium.

APBS implementation

This example follows the calculations from their paper.

The PQR files are included in the examples/protein-rna/ directory of the apbs-pdb2pqr repository. This
directory also includes a template.txt file that serves as a template for the APBS input files with IONSTR as a
placeholder for the ionic strength. This file is also shown here:

read
mol pqr model_outNB.pqr
mol pqr model_outNpep.pqr
mol pqr model_outBoxB19.pqr

end
elec name complex

mg-auto
dime 65 97 129
cglen 45.3322 54.9498 82.2633
fglen 45.3322 52.3234 68.3902
cgcent mol 1
fgcent mol 1
mol 1
npbe
bcfl sdh
pdie 4.0
ion charge 1 conc IONSTR radius 2.0
ion charge -1 conc IONSTR radius 2.0
sdie 80.0
srfm mol
chgm spl2

(continues on next page)

2.2. Using APBS 47

APBS, Release 3.0.0

(continued from previous page)

sdens 10.00
srad 1.40
swin 0.30
temp 298.15
calcenergy total
calcforce no
write qdens dx qdens-complex-IONSTR
write ndens dx ndens-complex-IONSTR

end
elec name peptide

mg-auto
dime 65 97 129
cglen 45.3322 54.9498 82.2633
fglen 45.3322 52.3234 68.3902
cgcent mol 1
fgcent mol 1
mol 2
npbe
bcfl sdh
pdie 4.0
sdie 80.0
ion charge 1 conc IONSTR radius 2.0
ion charge -1 conc IONSTR radius 2.0
srfm mol
chgm spl2
sdens 10.00
srad 1.40
swin 0.30
temp 298.15
calcenergy total
calcforce no
write qdens dx qdens-peptide-IONSTR
write ndens dx ndens-peptide-IONSTR

end
elec name rna

mg-auto
dime 65 97 129
cglen 45.3322 54.9498 82.2633
fglen 45.3322 52.3234 68.3902
cgcent mol 1
fgcent mol 1
mol 3
npbe
bcfl sdh
pdie 4.0
sdie 80.0
ion charge 1 conc IONSTR radius 2.0
ion charge -1 conc IONSTR radius 2.0
srfm mol
chgm spl2
sdens 10.00
srad 1.40
swin 0.30
temp 298.15
calcenergy total
calcforce no
write qdens dx qdens-rna-IONSTR

(continues on next page)

48 Chapter 2. Contents

APBS, Release 3.0.0

(continued from previous page)

write ndens dx ndens-rna-IONSTR
end
print elecEnergy complex - peptide - rna end
quit

As used in the template file, the READ command, our calculation will have three parts:

• Calculation of the total electrostatic energy (including self-interaction energies) of the peptide-RNA complex.
This calculation is named complex in the input file.

• Calculation of the total electrostatic energy (including self-interaction energies) of the peptide. This calculation
is named peptide in the input file.

• Calculation of the total electrostatic energy (including self-interaction energies) of the RNA. This calculation is
named rna in the input file.

The calculations themselves will not be overly demanding, since we will use relatively coarse grids. This grid coarse-
ness has a significant impact on the absolute electrostatic binding energy we obtain from this particular calculation:
the calculated energy isn’t converged with respect to grid spacing. However, the overall slope of binding energy with
respect to monovalent ion concentration is rather insensitive with respect to the grid spacing, allowing us to save
computational time and effort during the calculations. The calculation will conclude with a PRINT input file section
command which will combine the total energies from the three parts to obtain our approximate absolute electrostatic
binding energy for the complex at 0.225 M monovalent salt concentration. It is very important to note that this absolute
energy no meaning in isolation for several reasons:

• It is not converged with respect to grid spacing

• It does not contain other very important non-electrostatic aspects of the binding energy which are important for
the measured affinity

IONSTR is a placeholder that represents the ion concentration for the APBS calculation.

You will also have to create a dxmath.txt file which contains the following.

qdens-complex-IONSTR.dx
qdens-pep-IONSTR.dx -
qdens-rna-IONSTR.dx -
qdens-diff-IONSTR.dx =

dxmath will subtract the dx maps of the individual peptide and RNA from the overall structure (and prints to the
qdens-diff-IONSTR.dx file.

Automation with Python

We have provided Python scripts apbs_win, unix_dx.py that run the necessary APBS calculations and analyze
the results. When you run these programs, you need to be in the same directory as template.txt and dxmath.
txt. This script will create all the input files for the tests as well as run apbs and dxmath on your template.txt
and dxmath.txt files. Most of the syntax fills in the ion concentrations in the template file, and the call commands
actually run the calculations on each input.

Visualization

The qdens-diff-0.225.dx file produced by the script can be viewed in PyMOL or another visualization program
to give something similar to the following imaged which show the difference in charge density before and after binding.

2.2. Using APBS 49

APBS, Release 3.0.0

50 Chapter 2. Contents

APBS, Release 3.0.0

VIsualization with PyMOL

The PyMOL molecular graphics software package can both run APBS and visualize resulting electrostatic potentials.
Below are instructions for performing a basic demonstration of how to go from a PDB entry to a plot of structure and
potential in PyMOL using APBS.

Run the APBS calculation

• Load your PQR file you created into PyMOL (File → Open. . .) and choose your favorite graphical representa-
tion of the molecular structure.

• Go to Plugin → APBS Tools. . . to open the APBS calculation plugin.

• Under the Main tab of the PyMOL APBS Tools window, select Use another PQR and either browse to (via the
Choose Externally Generated PQR button) or input the path to your PQR file. This step is necessary to ensure
you use the radii and charges assigned by PDB2PQR.

• Under the APBS Location tab of the PyMOL APBS Tools window, either browse to (via the APBS binary
location: button) or input the path to your local APBS binary. It is not necessary to provide a path to the APBS
psize.py binary for most biomolecules.

2.2. Using APBS 51

http://www.pymol.org/

APBS, Release 3.0.0

• Under the Temporary File Locations tab of the PyMOL APBS Tools window, customize the locations of the
various temporary files created during the run. This can be useful if you want to save the generated files for later
use.

• Under the Configuration tab of the PyMOL APBS Tools window, press Set grid to set the grid spacings. The
default values are usually sufficient for all but the most highly charged biomolecules.

• Under the Configuration tab of the PyMOL APBS Tools window, customize the remaining parameters; the
defaults are usually OK.

Note: 0.150 M concentrations for the +1 and 1 ion species are often useful to ensure that electrostatic properties
are not overly exaggerated.

• Under the Configuration tab of the PyMOL APBS Tools window, press the Run APBS button to start the APBS
calculation. Depending on the speed of your computer, this could take a few minutes. The Run APBS button
will become unselected when the calculation is finished.

Visualize the results

Before proceeding, you must load the electrostatic potential data into PyMOL. Under the Visualization tab of the
PyMOL APBS Tools window, press the Update button.

Electrostatic isocontours

PyMOL makes this step very easy: adjust the positive and negative “Contour” fields to the desired values (usually ±1,
±5, or ±10 kT/e) and press the Positive Isosurface, Negative Isosurface, and Show buttons.

At this point, you probably have a figure that looks something like the image below.

If the colors are not as you expect, you can change the colors of the objects iso_neg and iso_pos in the main menu. By
convention (for electrostatics in chemistry), red is negative (think oxygen atoms in carboxyl groups) and blue positive
(think nitrogen atoms in amines).

Surface potentials

If you haven’t already, hide the isocontours by pressing the Positive Isosurface, Negative Isosurface, and Hide buttons.
The surface potential is also straightforward to visualize. Set the “Low” and “High”values to the desired values
(usually ±1, ±5, or ±10 kT/e) at which the surface colors are clamped at red (-) or blue (+). Check the “Solvent
accessible surface” and “Color by potential on sol. acc. surf.” buttons to plot the potential on the solvent-accessible
(probe-inflated or Lee-Richards) surface. Press the Molecular Surface Show button to load the surface potential.

The solvent-accessible surface tends to reveal more global features of the surface potential. Tighter surfaces (e.g.,
van der Waals and molecular or Connolly surfaces) provide more information about the shape of the biomolecule
but otherwise tend to simply map atomic surface charges onto the biomolecular surface. PyMOL can simultaneously
provide geometric information (from the molecular surface) and useful electrostatic potential information (from the
solvent-accessible surface). To visualize the molecule in this way, simply uncheck the “Solvent accessible surface”box
and check the “Color by potential on sol. acc. surf.” box on the Visualization tab.

Virtual reality with UnityMol

Molecular visualization software packages provide the ability for users to explore the 3D representations molecu-
lar structures and properties. Typical user interaction is limited to panning, zooming, and rotating the molecule

52 Chapter 2. Contents

APBS, Release 3.0.0

Fig. 1: ±1 kT/e electrostatic potential isocontours of FAS2 in PyMOL

2.2. Using APBS 53

APBS, Release 3.0.0

Fig. 2: ±5 kT/e electrostatic potential of FAS2 in PyMOL plotted on the solvent-accessible surface.

54 Chapter 2. Contents

APBS, Release 3.0.0

using a mouse and keyboard while viewing on a standard computing monitor. These techniques support a pseudo
3-dimensional view of a molecule to understand its structure but lack the true depth perception people are used to with
stereoscopic vision in the real world.

New advancements in virtual reality (VR) technologies has resulted in lower costs and systems that are easier to use to
many consumers. Compared to past VR hardware, these new systems have several key advancements including lower
latency, higher frame rates, and improved resolution. Additionally, these systems are equipped with better optics and
motion tracking and a more robust software ecosystem.

We are extending the visualization capabilities for APBS through the incorporation of a VR device with molecular
rendering software. We are currently experimenting with the HTC Vive, which allows a person to walk around a 15’
by 15’ physical space while wearing a head mounted display. Precise head movements are matched in virtual reality
with no noticeable latency. Additionally, the HTC Vive controllers are motion tracked with millimeter precision and
provide a valuable method for interacting with virtual objects. We have enabled VR using the HTC Vive in the
UnityMol molecular visualization software (created by Baaden, et al.) and incorporated electrostatic surface data
(see figure below and a YouTube video). New viewing capabilities now include walking around, grabbing (using the
motion controllers), and scaling (gestures) of molecules. We are actively working with Dr. Baaden and his group to
determine the best use of interaction techniques for users to interact with molecular models through his software.

Fig. 3: View of UnityMol form the monitor as it is being used in VR with controllers.

For future work, we would like to further extend UnityMol in the HTC Vive to include natural user interactions for
viewing multiple molecules, vary the electrostatic results from APBS, and change molecular attributes. We envision
this tool will also enable virtual collaboration for participant in different locations. Each participant will be able to
view, gesture and interact with the same data in the same VR space. Finally, we would like to explore the use of VR
for research related to docking of different molecules.

Getting the software

1. Download UnityMol-APBS-PS.zip from SourceForge.

2. Unzip UnityMol-APBS-PS.zip; the resulting folder contains UnityMol-APBS.zip and
APBS-PDB2PQR.zip.

2.2. Using APBS 55

http://www.baaden.ibpc.fr/umol/
https://www.youtube.com/watch?v=Xxb3W8jnnp8&t=21s
https://sourceforge.net/projects/unitymol-apbs/

APBS, Release 3.0.0

3. Unzip UnityMol-APBS.zip; the resulting folder contains UnityMol.exe.

4. Optionally unzip APBS-PDB2PQR.zip into C:` to generate three directories
:file:`apbs (containing apbs executable), pdb2pqr (containing pdb2pqr executable), and
OutputFiles. Alternatively, these executables can be downloaded and installed separately.

Using the software

Launch UnityMol.exe UnityMol.exe to start the VR visualization. The user interface is illustrated below.

Fig. 4: UnityMol-APBS user interface for PDB2PQR and APBS. (A) The main UnityMolAPBS menu; orange box
highlights the two buttons used to open the APBS and PDB2PQR tools. (B) The main menu for interactions with
APBS and PDB2PQR. Blue boxes show the buttons to launch PDB2PQR and APBS executables, green boxes show
the location of the options used for producing the image in below, and the purple boxes highlight the two input fields
required to use custom force fields and custom residue names.

56 Chapter 2. Contents

APBS, Release 3.0.0

Acetylcholinesterase example

The example illustrates the VR vizualization of the electrostatic surface potentials and electrostatic field lines of
Torpedo californica acetylcholinesterase (AChE).

1. Download 5ei5.pdb from https://www.rcsb.org/structure/5EI5

2. Open UnityMol-APBS (VR or desktop)

3. Load 5ei5.pdb file

4. Open the PDB2PQR panel

5. Choose options (examples below) or run the default (default force field is AMBER)

• apbs-input generates input file necessary for APBS

• drop-water removes explicit water molecules from structure

• summary writes atom names and sequence to a new file

• salt writes salt bridge donor and acceptor atoms to a new file

• hbond writes hydrogen bonding donors and acceptors to a new file. The resulting .hbond and .salt
files can be loaded as a new selection in UnityMol-APBS

6. Select all(5EI5) and run PDB2PQR

7. 5ei5X.pqr is written to a file and is immediately loaded for the user.

8. Select all(5EI5) and run APBS

9. 5ei5X.dx is created and loaded into the selection all(5EI5X) automatically

10. Select the + button on the all(5EI5X) selection tab, then select surface

11. Select color by charge

12. Select the + button on the all(5EI5X) selection tab, then select field lines

As a result of these steps, you should see a figure similar to the following.

2.2.5 Tools and utilities

APBS is distributed with utilities designed to simplify typical tasks associated with electrostatics calculations.

Conversion utilities

amber2charmm.sh

A bash script for converting AMBER atom names to CHARMM names. Found in tools/conversion

del2dx

Converts DelPhi-format map files (electrostatic potential, etc.) to APBS OpenDX format. Found in tools/mesh

dx2mol

Converts OpenDX format map files to MolMol format. Found in tools/mesh

2.2. Using APBS 57

https://www.rcsb.org/structure/5EI5

APBS, Release 3.0.0

Fig. 5: Electrostatic surface potential and field lines of Torpedo californica AChE (PDB ID 5EI5) with bound alkylene-
linked bis-tacrine. (A) Electrostatic field lines and protein secondary structure shown with alpha helices (yellow), beta
sheets (blue), and random coils (white). Residues Tyr70, Trp84, Trp279, and Phe330 are shown interacting with
alkylene-linked bis-tacrine via hydrogen bonding and 𝜋-𝜋 stacking interactions. The red oval highlights the potential
gradient. (B) AChE surface model with field lines and mapped electrostatic surface potentials shown with neutral,
negative, and positive charges in white, red, and blue, respectively. Field lines are calculated from a gradient (value of
0.2) and depicted with the starting points in red and the ending points in blue. The orientation is the same in Figures
A and B, where the alkylene-linked bis-tacrine can be seen occupying the catalytic gorge. The white circle highlights
the potential gradient exiting the catalytic gorge.

dx2uhbd

Converts OpenDX format map files to UHBD format. Found in tools/mesh

qcd2pqr.awk

An awk script for converting from UHBD QCD format to PQR format.

Benchmarking utilities

benchmark

Benchmark file I/O for reading/writing scalar data. Found in tools/mesh

uhbd_asc2bin

Converts UHBD ASCII-format files to binary format. Found in tools/mesh

WHATIF2AMBER.sed

A sed script for converting WHATIF atoms names to the AMBER naming scheme. Found in tools/conversion

58 Chapter 2. Contents

APBS, Release 3.0.0

Setup and analysis utilities

analysis

Calculates various metrics from input scalar data. Found in tools/mesh

born

Calculate generalized Born forces and energies. Found in tools/manip

coulomb

Calculate Coulomb forces and energies. Found in tools/manip

dxmath

Performs simple arithmetic operations with Cartesian grid data. This program takes as input a file with operations
specified in a stack-based (RPN) manner. For example, a command file which adds grid1 and grid2, multiplies the
result by 5.3, adds grid4, subtracts 99.3 from the whole thing, and writes the result on grid5 would have the form:

grid1
grid2 +
5.3 *
grid4 +
99.3 -
grid5 =

The file names, scalar values, and operations must be separated by tabs, line breaks, or white space. Comments can be
included between the character # and a new line (in the usual shell script fashion). Found in tools/mesh

inputgen.py

Create an APBS input file using psize.py data. Found in tools/manip

mergedx and mergedx2

Combine multiple OpenDX files into a single resampled file. mergedx2 can perform a number of grid manipulation
operations, including:

• Combining multiple OpenDX map files

• Resampling of one or more OpenDX map files (for example to alter the grid spacing of separate OpenDX files
for further manipulation)

• Extracting a subregion of an existing OpenDX map file.

Found in tools/mesh

mgmesh

Prints out acceptable combinations of nlev and dime for multigrd calculations. Found in tools/mesh

2.2. Using APBS 59

APBS, Release 3.0.0

multivalue

This program evaluates OpenDX scalar data at a series of user-specified points and returns the value of the data at each
point. Found in tools/mesh

psize.py

Suggest grid sizes and spacings for APBS given an input molecule. Found in tools/manip

similarity

Computes similarity between two scalar grid datasets. Found in tools/mesh

smooth

Convolve grid data with various filters. Found in tools/mesh

2.2.6 Other software

A variety of other software can be used to visualize and process the results of PDB2PQR and APBS calculations.

Visualization software

Examples of visualization software that work with output from PDB2PQR and APBS:

• PyMOL

• VMD

• Chimera

• PMV

Dynamics simulations

As an example of PDB2PQR and APBS integration with molecular mechanics sofware, the iAPBS library was de-
veloped to facilitate the integration of APBS with other molecular simulation packages. This library has enabled the
integration of APBS with several molecular dynamics packages, including NAMD, AMBER, and CHARMM.

APBS is also used directly by Brownian dynamics software such as SDA and BrownDye.

2.3 Solvation model background

2.3.1 Solvation models

Electrostatic and solvation models can be roughly divided into two classes ([Warshel2006], [Roux1999], [Ren2012])
explicit solvent models that treat the solvent in atomic detail and implicit solvent models that generally replace the
explicit solvent with a dielectric continuum. Each method has its strengths and weaknesses. While explicit solvent
models offer some of the highest levels of detail, they generally require extensive sampling to converge properties

60 Chapter 2. Contents

https://pymol.org/
https://www.ks.uiuc.edu/Research/vmd/
https://www.cgl.ucsf.edu/chimera/
http://mgltools.scripps.edu/packages/pmv
https://mccammon.ucsd.edu/iapbs/
http://www.ks.uiuc.edu/Research/namd/
http://ambermd.org/
https://www.charmm.org/charmm/
https://mcm.h-its.org/sda/
http://browndye.ucsd.edu/

APBS, Release 3.0.0

of interest. On the other hand, implicit solvent models trade detail and some accuracy for the “pre-equilibration” of
solvent degrees of freedom and elimination of sampling for these degrees of freedom. Implicit solvent methods are
popular for a variety of biomedical research problems.

The polar solvation energy is generally associated with a difference in charging free energies in vacuum and solvent.
A variety of implicit solvent models are available to biomedical researchers to describe polar solvation; however, the
most widely-used methods are currently the Generalized Born (GB) and Poisson-Boltzmann (PB) models. GB and
related methods are very fast heuristic models for estimating the polar solvation energies of biomolecular structures
and therefore are often used in high-throughput applications such as molecular dynamics simulations. PB methods
can be formally derived from more detailed theories and offer a somewhat slower, but often more accurate, method for
evaluating polar solvation properties and often serve as the basis for parameterization and testing of GB methods. Fi-
nally, unlike most GB methods, PB models provide a global solution for the electrostatic potential and field within and
around a biomolecule, therefore making them uniquely suited to visualization and other structural analyses, diffusion
simulations, and a number of other methods which require global electrostatic properties.

The PB equation ([Fogolari2002], [Lamm2003], [Grochowski2007], [Baker2005]) is a nonlinear elliptic partial differ-
ential equation of the form shown in the figure below which is solved for the electrostatic potential. The coefficients of
this equation are directly related to the molecular structure of the system under consideration. PB theory is approximate
and, as a result, has several well-known limitations which can affect its accuracy ([Grochowski2007], [Netz2000]),
particularly for strongly charged systems or high salt concentrations. However, despite these limitations, PB methods
are still very important for biomolecular structural analysis, modeling, and simulation. Furthermore, these limitations
are currently being addressed through new implicit solvent models and hybrid treatments which extend the applicabil-
ity of PB theory while preserving some of its computational efficiency. There are currently examples of both types of
treatments which leverage APBS ([Azuara2006], [Chu2007], [Vitalis2004]).

PB methods provide polar solvation energies and therefore must be complemented by non-polar solvation models to
provide a complete view of biomolecular solvent-solute interactions. non-polar solvation is generally associated with
the insertion of the uncharged solute into solvent. There are many non-polar solvation models available; however,
work by Levy et al. [Levy2003] as well as our own research [Wagoner2006] has demonstrated the importance of non-
polar implicit solvent models which include treatment of attractive solute-solvent dispersion terms. This model has

2.3. Solvation model background 61

APBS, Release 3.0.0

been implemented in APBS and can also be easily transformed into simpler popular non-polar models (e.g., solvent-
accessible surface area). While this model can be used separately from PB to analyze non-polar contributions to
solvation energy, its preferred use is coupled to the PB equation through a geometric flow model [Chen2010] which
treats polar and non-polar interactions in the same framework and reduces the number of user-specified empirical
parameters.

2.3.2 Caveats and sources of error

Model error

When performing solvation calculations using APBS, it is important to keep in mind that you are using an approximate
model for solvation. Therefore, your answers may contain errors related to approximations in the model. Many review
articles have covered the nature of these approximations, we will stress the highlights below.</p>

Linear dielectric response

The Poisson-Boltzmann equation models the solvent as a dielectric continuum that responds linearly to all applied
fields. In particular, under this model, very strong fields can induce unrealistically strong polarization in the dielectric
media representing the solvent and/or the solute interior. However, molecular solvents or solutes cannot support an
infinite amount of polarization: they are limited by their density, their finite dipole moments, and their finite degree of
electronic polarizability. Therefore, the continuum model assumption of linear dielectric response can break down in
situations with strong electric fields; e.g., around nucleic acids or very highly-charged proteins.

Local dielectric response

The Poisson-Boltzmann equation models the solvent as a dielectric continuum that also responds locally to all applied
fields. n other words, under this model, the local polarization at a point x is only dependent on the field at point x.
However, molecular solvents and solutes clearly don’t obey this assumption: the variety of covalent, steric, and other
non-bonded intra- and inter-molecular interactions ensures that the polarization at point x is dependent on solute-field
interactions in a non-vanishing neighborhood around x. One way to limit the impact of this flawed assumption, is to
model solute response as “explicitly” as possible in your continuum electrostatics problems. In other words, rather
than relying upon the continuum model to reproduce conformational relaxation or response in your solute, model such
response in detail through molecular simulations or other conformational sampling.

Ambiguity of dielectric interfaces and coefficient values

Violation of the assumptions of linear and local dielectric response in real molecular systems leads to serious ambiguity
in the definition of the dielectric coefficient in the Poisson-Boltzmann equation. In particular, while the values for
bulk solvent (i.e., far away from the solute) response are well-defined, all other values of the dielectric coefficient are
ambiguous. In general, continuum models assume a constant low-dielectric value inside the solute and the bulk solvent
value outside the solute. This assumption creates tremendous sensitivity of calculation results on the placement of the
dielectric interface (usually determined by solute atomic radii) and the specific value of the internal solute dielectric.
In general, errors arising from this assumption can be minimized by using internal dielectric values that are consistent
with the solute atomic radii parameterization.

No specific ion-solvent or ion-solute interactions

Most Poisson-Boltzmann models assume that ions do not interact directly with the solvent: they are charges embedded
in the same dielectric material as the bulk solvent. This assumption implies that ions experience no “desolvation”

62 Chapter 2. Contents

APBS, Release 3.0.0

penalty as they interact with the solute surface. Additionally, most Poisson-Boltzmann models assume that ions
interaction with the solute only through electrostatic and hard-sphere steric potentials. However, this assumption
neglects some of the subtlety of ion-protein interactions; in particular, dispersive interactions that can possibly lead to
some degree of ion specificity.

Mean field ion behavior

Finally, the Poisson-Boltzmann model is a “mean field” description of ionic solutions. This means that ions only
experience the average influence of other ions in the system; the model neglects fluctuations in the ionic atmosphere
and correlations between the ions in solution. Such correlations and fluctuations can be very important at high ionic
charge densities; e.g., for multivalent ions, high ion concentrations, or the high-density ionic regions near highly-
charged biomolecules.

Parameter set errors

Structure-based errors

Electrostatics calculations can be very sensitive to errors in the structure, including:

• Misplaced atoms or sidechains

• Missing regions of biomolecular structure

• Incorrect titration state assignments

Of these errors, incorrect titration states are the most common and, often, the most problematic. The software package
PDB2PQR was created to minimize all of the above problems and we recommend its use to “pre-process” structures
before electrostatics calculations.

Discretization error

The Poisson-Boltzmann partial differential equation must be discretized in order to be solved on a computer. APBS
discretizes the equation in spacing by evaluating the problem coefficients and solving for the electrostatic potential on
a set of grid (finite difference) or mesh (finite element) points. However, this discretization is an approximation to the
actual, continuously-specified problem coefficients. Coarser discretization of coefficients and the solution reduce the
overall accuracy and introduce errors into the final potential and calculated energies.

It is very important to evaluate the sensitivity of your calculated energies to the grid spacings and lengths. In general,
it is a good idea to scan a range of grid spacings and lengths before starting a problem and choose the largest problem
domain with the smallest grid spacing that gives consistent results (e.g., results that don’t change as you further reduce
the grid spacing).

Solver and round-off error

APBS uses iterative solvers to solve the nonlinear algebraic equations resulting from the discretized Poisson-
Boltzmann equation. Iterative solvers obtain solutions to algebraic equations which are accurate within a specified
error tolerance. Current versions of APBS use a fixed error tolerance of 10-6 which implies approximately 1 part per
million root-mean-squared error in calculated potentials. Such error tolerances have been empirically observed to give
good accuracy in the calculated energies obtained with APBS.

However, it is important to note that the error in potential does not necessarily directly relate to the error in the
energies calculated by APBS. In particular, most meaningful energies are calculated as differences between energies
from several calculations. While the accuracy of each separate energy can be related to the solver error tolerance, the
energy difference can only be loosely bounded by the error tolerance.

2.3. Solvation model background 63

APBS, Release 3.0.0

This issue is illustrated in the protein kinase ligand binding example provided with APBS as pka-lig and analyzed
below. This example demonstrates that, while the errors for each calculation remain small, the overall error in the
computed energy can be very large; particularly when two different methods are compared.

Table 2: Sensitivity of PB energies to iterative solver error tolerance
(APBS 1.2)

Er-
ror
tol-
er-
ance

Pro-
tein
en-
ergy

Protein en-
ergy relative
error (with re-
spect to 10-12

tolerance)

Lig-
and
en-
ergy

Ligand en-
ergy relative
error (with re-
spect to 10-12

tolerance)

Com-
plex
en-
ergy

Complex en-
ergy relative
error (with re-
spect to 10-12

tolerance)

Bind-
ing
en-
ergy

Binding en-
ergy relative
error (with
respect to 10-12

tolerance)
1.00E-
06

3.01E+052.47E-08 1.05E+041.42E-08 3.11E+052.45E-08 8.08E+007.75E-06

1.00E-
09

3.01E+053.19E-11 1.05E+041.71E-11 3.11E+052.45E-08 8.08E+002.48E-09

1.00E-
12

3.01E+050.00E+00 1.05E+040.00E+00 3.11E+050.00E+00 8.08E+000.00E+00

2.3.3 Further reading

2.4 Supporting APBS

2.4.1 Please register as a user!

Please help ensure continued support for APBS-PDB2PQR by registering your use of our software.

2.4.2 Citing our software

If you use APBS in your research, please cite one or more of the following papers:

• Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, Chun
M, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng W, Krasny R, Wei
G-W, Holst MJ, McCammon JA, Baker NA. Improvements to the APBS biomolecular solvation software suite.
Protein Sci, 27 (1), 112-128, 2018. https://doi.org/10.1002/pro.3280

• R. Bank and M. Holst, A New Paradigm for Parallel Adaptive Meshing Algorithms. SIAM Review 45, 291-
323, 2003. http://epubs.siam.org/doi/abs/10.1137/S003614450342061

• Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to micro-
tubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041 2001. http://www.pnas.org/content/98/
18/10037

• M. Holst, Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Math-
ematics 15, 139-191, 2001 http://dx.doi.org/10.1023/A:1014246117321

• M. Holst and F. Saied, Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more
robust and efficient methods. J. Comput. Chem. 16, 337-364, 1995.

• M. Holst and F. Saied, Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem. 14, 105-113,
1993.

64 Chapter 2. Contents

http://eepurl.com/by4eQr
https://doi.org/10.1002/pro.3280
http://epubs.siam.org/doi/abs/10.1137/S003614450342061
http://www.pnas.org/content/98/18/10037
http://www.pnas.org/content/98/18/10037
http://dx.doi.org/10.1023/A:1014246117321

APBS, Release 3.0.0

2.4.3 Supporting organizations

The PDB2PQR authors would like to give special thanks to the supporting organizations behind the APBS and
PDB2PQR software:

National Institutes of Health Primary source of funding for APBS via grant GM069702

National Biomedical Computation Resource Deployment and computational resources support from 2002 to 2020

National Partnership for Advanced Computational Infrastructure Funding and computational resources

Washington University in St. Louis Start-up funding

2.5 Getting help

2.5.1 GitHub issues

Our preferred mechanism for user questions and feedback is via GitHub issues. We monitor these issues daily and
usually respond within a few days.

2.5.2 Announcements

Announcements about updates to the APBS-PDB2PQR software and related news are available through our mailing
list; please register for updates.

2.5.3 Contacting the authors

If all else fails, feel free to contact nathanandrewbaker@gmail.com.

2.6 Further reading

2.6.1 General solvation reviews

• Baker NA. Poisson-Boltzmann methods for biomolecular electrostatics. Methods in Enzymology, 383, 94-118,
2004. http://www.sciencedirect.com/science/article/pii/S0076687904830052

• Baker NA, McCammon JA. Electrostatic interactions. Structural Bioinformatics. Weissig H, Bourne PE, eds.,
2005. http://dx.doi.org/10.1002/0471721204.ch21

• Baker NA. Biomolecular applications of Poisson-Boltzmann methods. Reviews in Computational Chemistry.
Lipkowitz KB, Larter R, Cundari TR., 21, 2005. http://dx.doi.org/10.1002/0471720895.ch5

• Baker NA. Improving implicit solvent simulations: a Poisson-centric view. Curr Opin Struct Biol, 15, 137-43,
2005. http://dx.doi.org/10.1016/j.sbi.2005.02.001

• Baker NA, Bashford D, Case DA. Implicit solvent electrostatics in biomolecular simulation. New Algorithms
for Macromolecular Simulation. Leimkuhler B, Chipot C, Elber R, Laaksonen A, Mark A, Schlick T, Schutte
C, Skeel R, eds., 2006. http://dx.doi.org/10.1007/3-540-31618-3_15

• Dong F, Olsen B, Baker NA. Computational Methods for Biomolecular Electrostatics. Methods in Cell Bi-
ology: Biophysical Tools for Biologists, 84, 843-870, 2008. http://www.sciencedirect.com/science/article/pii/
S0091679X0784026X

2.5. Getting help 65

http://www.nih.gov
http://nbcr.ucsd.edu/
http://www.hipersoft.rice.edu/npaci/
http://biochem.wustl.edu
https://github.com/Electrostatics/apbs/issues
http://us11.campaign-archive1.com/home/?u=a5808042b2b3ea90ee3603cd8&id=28701e36f0
http://us11.campaign-archive1.com/home/?u=a5808042b2b3ea90ee3603cd8&id=28701e36f0
http://eepurl.com/by4eQr
mailto:nathanandrewbaker@gmail.com
http://www.sciencedirect.com/science/article/pii/S0076687904830052
http://dx.doi.org/10.1002/0471721204.ch21
http://dx.doi.org/10.1002/0471720895.ch5
http://dx.doi.org/10.1016/j.sbi.2005.02.001
http://dx.doi.org/10.1007/3-540-31618-3_15
http://www.sciencedirect.com/science/article/pii/S0091679X0784026X
http://www.sciencedirect.com/science/article/pii/S0091679X0784026X

APBS, Release 3.0.0

• Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA. Biomolecular electrostatics and
solvation: a computational perspective. Quart Rev Biophys, 45 (4), 427-491, 2012. http://dx.doi.org/10.1017/
S003358351200011X

2.6.2 APBS parallel solvers

• Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to mi-
crotubules and the ribosome. Proc Natl Acad Sci USA, 98, 10037-41, 2001. http://dx.doi.org/10.1073/pnas.
181342398

• Baker NA, Sept D, Holst MJ, McCammon JA. The adaptive multilevel finite element solution of the Poisson-
Boltzmann equation on massively parallel computers. IBM J Res Devel, 45, 427-38, 2001. http://dx.doi.org/10.
1147/rd.453.0427

2.6.3 APBS multigrid solver

• M. Holst, Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Math-
ematics 15, 139-191, 2001 http://dx.doi.org/10.1023/A:1014246117321

• M. Holst and F. Saied, Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more
robust and efficient methods. J. Comput. Chem. 16, 337-364, 1995.

• M. Holst and F. Saied, Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem. 14, 105-113,
1993.

2.6.4 APBS finite element solver

• Holst M, Baker NA, Wang F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I:
algorithms and examples. J Comput Chem, 21, 1319-42, 2000. http://bit.ly/1goFAFE

• Baker N, Holst M, Wang F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II:
refinement schemes based on solvent accessible surfaces. J Comput Chem, 21, 1343-52, 2000. http://bit.ly/
1dNSP8l

2.6.5 APBS geometric flow solver

• Chen Z, Baker NA, Wei GW. Differential geometry based solvation model I: Eulerian formulation, J Comput
Phys, 229, 8231-58, 2010. http://dx.doi.org/10.1016/j.jcp.2010.06.036

• Chen Z, Baker NA, Wei GW. Differential geometry based solvation model II: Lagrangian formulation. J Math
Biol, 63, 1139-1200, 2011. http://dx.doi.org/10.1007/s00285-011-0402-z

• Chen Z, Zhao S, Chun J, Thomas DG, Baker NA, Wei GW. Variational approach for nonpolar solvation analysis.
Journal of Chemical Physics, 137, 084101, 2012. http://dx.doi.org/10.1063/1.4745084

• Thomas DG, Chun J, Chen Z, Wei G, Baker NA. Parameterization of a Geometric flow implicit solvation model.
Journal of Computational Chemistry, 34, 687-95, 2013. http://dx.doi.org/10.1002/jcc.23181

• Daily M, Chun J, Heredia-Langner A, Baker NA. Origin of parameter degeneracy and molecular shape re-
lationships in geometric-flow calculations of solvation free energies. J Chem Phys, 139, 204108, 2013.
http://dx.doi.org/10.1063/1.4832900

66 Chapter 2. Contents

http://dx.doi.org/10.1017/S003358351200011X
http://dx.doi.org/10.1017/S003358351200011X
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1147/rd.453.0427
http://dx.doi.org/10.1147/rd.453.0427
http://dx.doi.org/10.1023/A:1014246117321
http://bit.ly/1goFAFE
http://bit.ly/1dNSP8l
http://bit.ly/1dNSP8l
http://dx.doi.org/10.1016/j.jcp.2010.06.036
http://dx.doi.org/10.1007/s00285-011-0402-z
http://dx.doi.org/10.1063/1.4745084
http://dx.doi.org/10.1002/jcc.23181
http://dx.doi.org/10.1063/1.4832900

APBS, Release 3.0.0

2.6.6 TABI-PB boundary element solver

• Geng W, Krasny R. A treecode-accelerated boundary integral Poisson–Boltzmann solver for electrostatics of
solvated biomolecules, J Comput Phys, 247, 62-78, 2013. https://doi.org/10.1016/j.jcp.2013.03.056

2.6.7 Structural bioinformatics based on electrostatic properties

• Zhang X, Bajaj CL, Kwon B, Dolinsky TJ, Nielsen JE, Baker NA. Application of new multi-resolution meth-
ods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity.
Multiscale Model Simul, 5, 1196-213, 2006. http://dx.doi.org/10.1137/050647670

• Chakraborty S, Rao BJ, Baker N, Ásgeirsson B. Structural phylogeny by profile extraction and multiple super-
imposition using electrostatic congruence as a discriminator. Intrinsically Disordered Proteins, 1 (1), e25463,
2013. https://www.landesbioscience.com/journals/idp/article/25463/

2.6.8 Other fun with APBS

• Wagoner JA, Baker NA. Assessing implicit models for nonpolar mean solvation forces: the importance of
dispersion and volume terms. Proc Natl Acad Sci USA, 103, 8331-6, 2006. http://dx.doi.org/10.1073/pnas.
0600118103

• Swanson JMJ, Wagoner JA, Baker NA, McCammon JA. Optimizing the Poisson dielectric boundary with ex-
plicit solvent forces and energies: lessons learned with atom-centered dielectric functions. J Chem Theory
Comput, 3, 170-83, 2007. http://dx.doi.org/10.1021/ct600216k

• Schnieders MJ, Baker NA, Ren P, Ponder JW. Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann
Continuum. J Chem Phys, 126, 124114, 2007. http://dx.doi.org/10.1063/1.2714528

• Callenberg KM, Choudhary OP, de Forest GL, Gohara DW, Baker NA, Grabe M. APBSmem: A graphical
interface for electrostatic calculations at the membrane. PLoS ONE, 5, e12722, 2010. http://dx.doi.org/10.
1371/journal.pone.0012722

• Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA. Web servers and services
for electrostatics calculations with APBS and PDB2PQR. J Comput Chem, 32 (7), 1488-1491, 2011. http:
//dx.doi.org/10.1002/jcc.21720

• Konecny R, Baker NA, McCammon JA. iAPBS: a programming interface to the adaptive Poisson–Boltzmann
solver. Computational Science and Discovery, 5, 015005, 2012. http://dx.doi.org/10.1088/1749-4699/5/1/
015005

• Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, Chun
M, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng W, Krasny R, Wei
G-W, Holst MJ, McCammon JA, Baker NA. Improvements to the APBS biomolecular solvation software suite.
Protein Sci, 27 (1), 112-128, 2018. https://doi.org/10.1002/pro.3280

• Laureanti J, Brandi J, Offor E, Engel D, Rallo R, Ginovska B, Martinez X, Baaden M, Baker NA. Visualizing
biomolecular electrostatics in virtual reality with UnityMol-APBS. Protein Sci, 29 (1), 237-246, 2020. https:
//doi.org/10.1002/pro.3773

2.7 File formats

2.7.1 Mesh and scalar data formats

2.7. File formats 67

https://doi.org/10.1016/j.jcp.2013.03.056
http://dx.doi.org/10.1137/050647670
https://www.landesbioscience.com/journals/idp/article/25463/
http://dx.doi.org/10.1073/pnas.0600118103
http://dx.doi.org/10.1073/pnas.0600118103
http://dx.doi.org/10.1021/ct600216k
http://dx.doi.org/10.1063/1.2714528
http://dx.doi.org/10.1371/journal.pone.0012722
http://dx.doi.org/10.1371/journal.pone.0012722
http://dx.doi.org/10.1002/jcc.21720
http://dx.doi.org/10.1002/jcc.21720
http://dx.doi.org/10.1088/1749-4699/5/1/015005
http://dx.doi.org/10.1088/1749-4699/5/1/015005
https://doi.org/10.1002/pro.3280
https://doi.org/10.1002/pro.3773
https://doi.org/10.1002/pro.3773

APBS, Release 3.0.0

OpenDX scalar data format

We output most discretized scalar data (e.g., potential, accessibility, etc.) from APBS in the data format used by the
OpenDX software package. The OpenDX data format is very flexible; the following sections describe the application
of this format for APBS multigrid and finite element datasets.

The multigrid data format has the following form:

object 1 class gridpositions counts nx ny nz
origin xmin ymin zmin
delta hx 0.0 0.0
delta 0.0 hy 0.0
delta 0.0 0.0 hz
object 2 class gridconnections counts nx ny nz
object 3 class array type double rank 0 items n data follows
u(0,0,0) u(0,0,1) u(0,0,2)
...
u(0,0,nz-3) u(0,0,nz-2) u(0,0,nz-1)
u(0,1,0) u(0,1,1) u(0,1,2)
...
u(0,1,nz-3) u(0,1,nz-2) u(0,1,nz-1)
...
u(0,ny-1,nz-3) u(0,ny-1,nz-2) u(0,ny-1,nz-1)
u(1,0,0) u(1,0,1) u(1,0,2)
...
attribute "dep" string "positions"
object "regular positions regular connections" class field
component "positions" value 1
component "connections" value 2
component "data" value 3`

The variables in this format include:

nx ny nz The number of grid points in the x-, y-, and z-directions

xmin ymin zmin The coordinates of the grid lower corner

hx hy hz The grid spacings in the x-, y-, and z-directions.

n The total number of grid points; 𝑛 = 𝑛𝑥 * 𝑛𝑦 * 𝑛𝑧

u(*,*,*) The data values, ordered with the z-index increasing most quickly, followed by the y-index, and then the
x-index.

For finite element solutions, the OpenDX format takes the following form:

object 1 class array type float rank 1 shape 3 items N
v1x v1y v1z
v2x v2y v2z
...
vNx vNy vNz
object 2 class array type int rank 1 shape 4 items M
s1a s1b s1c s1d
s2a s2b s2c s2d
...
sMa sMb sMc sMd
attribute "element type" string "tetrahedra"
object 3 class array type float rank 0 items N
u1
u2

(continues on next page)

68 Chapter 2. Contents

APBS, Release 3.0.0

(continued from previous page)

...
uN
attribute "dep" string "positions"
object "irregular positions irregular connections" class field
component "positions" value 1
component "connections" value 2
component "data" value 3
end

where the variables in this format are:

N Number of vertices

vix viy viz Coordinates of vertex i

M Number of simplices

sia sib sic sid IDs of vertices in simplex i

ui Data value associated with vertex i

MCSF mesh format

APBS reads and writes meshes in the FEtk MCSF format <http://fetk.org/codes/mc/>.

UHBD scalar data format

We also support scalar data output in the legacy “UHBD format” for use with programs such as UHBD and SDA.

UHBD data is written in the format:

/* Write out the header */
Vio_printf(sock, "%72s\n", title);
Vio_printf(sock, "%12.5e%12.5e%7d%7d%7d%7d%7d\n", 1.0, 0.0, -1, 0,
nz, 1, nz);

Vio_printf(sock, "%7d%7d%7d%12.5e%12.5e%12.5e%12.5e\n", nx, ny, nz,
hx, (xmin-hx), (ymin-hx), (zmin-hx));

Vio_printf(sock, "%12.5e%12.5e%12.5e%12.5e\n", 0.0, 0.0, 0.0, 0.0);
Vio_printf(sock, "%12.5e%12.5e%7d%7d", 0.0, 0.0, 0, 0);

/* Write out the entries */
icol = 0;
for (k=0; k<nz; k++) {

Vio_printf(sock, "\n%7d%7d%7d\n", k+1, thee->nx, thee->ny);
icol = 0;
for (j=0; j<ny; j++) {

for (i=0; i<nx; i++) {
u = k*(nx)*(ny)+j*(nx)+i;
icol++;
Vio_printf(sock, " %12.5e", thee->data[u]);
if (icol == 6) {

icol = 0;
Vio_printf(sock, "\n");

}
}

}
}

2.7. File formats 69

http://browndye.ucsd.edu/
https://mcm.h-its.org/sda/

APBS, Release 3.0.0

2.7.2 Molecular structure formats

PQR molecular structure format

This format is a modification of the PDB format which allows users to add charge and radius parameters to existing
PDB data while keeping it in a format amenable to visualization with standard molecular graphics programs. The
origins of the PQR format are somewhat uncertain, but has been used by several computational biology software
programs, including MEAD and AutoDock. UHBD uses a very similar format called QCD.

APBS reads very loosely-formatted PQR files: all fields are whitespace-delimited rather than the strict column for-
matting mandated by the PDB format. This more liberal formatting allows coordinates which are larger/smaller than
± 999 Å. APBS reads data on a per-line basis from PQR files using the following format::

Field_name Atom_number Atom_name Residue_name Chain_ID Residue_number X Y Z Charge
→˓Radius

where the whitespace is the most important feature of this format. The fields are:

Field_name A string which specifies the type of PQR entry and should either be ATOM or HETATM in order to
be parsed by APBS.

Atom_number An integer which provides the atom index.

Atom_name A string which provides the atom name.

Residue_name A string which provides the residue name.

Chain_ID An optional string which provides the chain ID of the atom. Note that chain ID support is a new feature
of APBS 0.5.0 and later versions.

Residue_number An integer which provides the residue index.

X Y Z 3 floats which provide the atomic coordinates (in Å)

Charge A float which provides the atomic charge (in electrons).

Radius A float which provides the atomic radius (in Å).

Clearly, this format can deviate wildly from PDB due to the use of whitespaces rather than specific column widths and
alignments. This deviation can be particularly significant when large coordinate values are used. However, in order
to maintain compatibility with most molecular graphics programs, the PDB2PQR program and the utilities provided
with APBS attempt to preserve the PDB format as much as possible.

PDB molecular structure format

The PDB file format is described in detail in the Protein Data Bank documentation.

XML molecular structure format

The XML structure format was designed as a light-weight alternative to remediate some of the shortcomings of the
flat-file format. By use of XML, issues related to extra fields in the file or columns merging together can easily be
remedied. Additionally, APBS will only parse the necessary information from the XML file and will ignore all other
information, so users wishing to store extra data related to a residue or atom can do so inline without affecting APBS.

This data format has the following form:

70 Chapter 2. Contents

http://www.rcsb.org/pdb/static.do?p=file_formats/pdb/index.html

APBS, Release 3.0.0

<roottag>
<residue>

<atom>
<x>x</x>
<y>y</y>
<z>z</z>
<charge>charge</charge>
<radius>radius</radius>

</atom>
...

</residue>
...

</roottag>

The variables in this example are:

roottag This is the root element of the XML file. The value is not important to APBS - APBS simply checks that
it is closed at the end of the file.

x y z A float giving the {x, y, z}-coordinate of the atom in Å.

charge A float giving the atomic charge (in electrons).

atomradius A float giving the atomic Radius (in Å).

Note: Yes, we probably should have used PDBML instead.

2.7.3 Matrix formats

Harwell-Boeing matrix format

This is the sparse matrix output format used by APBS for analyses of the matrix operators which are constructed during
PB solution. This format was implemented so matrix operators could by decomposed with SuperLU and ARPACK
but this also serves as a useful general mechanism for sparse matrix input and output.

Parameter formats

APBS XML parameter format

This parameter file format has the following form:

<ffname>
<residue>

<name>resname</name>
<atom>

<name>atomname</name>
<charge>atomcharge</charge>
<radius>atomradius</radius>
<epsilon>atomepsilon</epsilon>

</atom>
...

</residue>
...

</ffname>

2.7. File formats 71

http://pdbml.pdb.org/

APBS, Release 3.0.0

The variables in this example are:

ffname The name of the forcefield. This is the root element of the XML file.

resname A string giving the residue name, as provided in the PDB file to be parameterized.

atomname A string giving the atom name, as provided in the PDB file to be parameterized.

atomcharge A float giving the atomic charge (in electrons).

atomradius A float giving the atomic Radius (in Å).

atomepsilon A float giving the Lennard-Jones well depth 𝜖 (in kJ/mol). This is used for the calculation of WCA
energies in apolar solvation energies and forces. We assume that the Lennard-Jones potential is defined in the
“AMBER style”

APBS flat-file parameter format

This parameter file format is a series of lines of the form:

Residue_name Atom_name Charge Radius Epsilon

where the whitespaces are important and denote separation between the fields. The fields here are:

Residue_name A string giving the residue name, as provided in the PDB file to be parametrized.

Atom_name A string giving the atom name, as provided in the PDB file to be parametrized.

Charge A float giving the atomic charge (in electrons).

Radius A float giving the atomic radius (in Å).

Epsilon A float giving the Lennard-Jones well depth (epsilon, in kJ/mol). This is used for the calculation of WCA
energies in apolar solvation energies and forces. We assume that the Lennard-Jones potential is defined in the
“AMBER style”

2.8 Release history

2.8.1 APBS 3.0 (May 2020)

• Binary releases may be found in GitHub releases and on SourceForge.

New Features

• Poisson-Boltzmann Analytical Method (PBAM, see Lotan & Head-Gordon) and Semi-Analytical Method (PB-
SAM, see Yap & Head-Gordon) integrated with APBS. PBSAM is currently only available in the Linux and OS
X distributions.

– Examples are located with the APBS examples in the pbam/ and pbsam/ directories.

• Tree-Code Accelerated Boundary Integral Poisson-Boltzmann Method (TABI-PB) integrated with APBS (See
Geng & Krasny).

– Examples are located with the APBS examples in the bem/, bem-pKa/, and bem-binding-energies/ folders

– Included NanoShaper alternative to MSMS.

– More information and documentation may be found in the Contributions section of the APBS-PDB2PQR
website

72 Chapter 2. Contents

https://github.com/Electrostatics/apbs-pdb2pqr/releases
http://sourceforge.net/projects/apbs/files/apbs
http://pubs.acs.org/doi/full/10.1021/ct050263p
http://pubs.acs.org/doi/abs/10.1021/ct100145f
http://www.sciencedirect.com/science/article/pii/S0021999113002404
http://www.poissonboltzmann.org/external_contributions/extern-tabi/

APBS, Release 3.0.0

• Added binary DX format support to the appropriate APBS tools.

• Test suite amended and expanded.

• Removed hard-coded limitation to number of grid points used to determine surface accessibility.

Known Bugs and Limitations

• PBSAM not building in windows due to C standard restrictions in the Microsoft compiler implementation.

Minor Updates

• PB(S)AM now requires the key work ‘pos’ for the term argument.

• PB(S)AM ‘surf’ keyword has been replaced with the ‘usemesh’ keyword.

• PB(S)AM ‘salt’ keyword has been replaced with the ‘ion’ keyword.

• PB(S)AM dynamics parameters are no longer accepted in the ELEC section.

• PB(S)AM now has only one type of ELEC method: pb(s)am_auto.

• PB(S)AM ‘gridpts’ keyword has been replaced with ‘dime’ keyword.

• PB(S)AM ‘dx’ and ‘3dmap’ keywords are deprecated to use the ‘write’ one instead.

• BEM mesh keyword now requires method names instead of just integer values.

• GEOFLOW ELEC type has been change from ‘geoflow-auto’ to ‘geoflow’.

• Fixed miscellaneous Windows build issues.

• Update the build configurations for the Pythons libraries.

Notes

• The following are included in APBS as Git submodules:

– Geometric Flow

– FETk

– PBAM/PBSAM

– TABI-PB

2.8.2 APBS 1.5 (Oct 2016)

Dearest APBS users,

We are pleased to announce the latest release of APBS 1.5. The latest version of APBS includes several notable fea-
tures and bug fixes. This release includes the addition of Poisson-Boltzmann Analytical-Method (PB-AM), Poisson-
Boltzmann Semi-Analytical Method (PB-SAM) and the Treecode-Accelerated Boundary Integral Poisson-Boltzmann
method (TABI). Additionally, we have made improvements to the build system and the system tests, as well as mis-
cellaneous bug fixes. A full change log may be found here.

For help with installation, building, or running APBS, please visit https://gitter.im/Electrostatics/help.

We thank you for your continued support of APBS.

Sincerely,

2.8. Release history 73

https://github.com/Electrostatics/geoflow_c/tree/e8ce510a670e0b7f3501e72be6141fc20328f947
https://github.com/Electrostatics/FETK/tree/0c6fdeabe8929acea7481cb1480b5706b343b7e0
https://github.com/davas301/pb_solvers/tree/4805cbec02b30e9bae927f03ac2fecd3217c4dad
https://github.com/lwwilson1/TABIPB/tree/941eff91acd4153a06764e34d29b633c6e3b980f
https://github.com/Electrostatics/apbs-pdb2pqr/blob/master/apbs/doc/ChangeLog.md
https://gitter.im/Electrostatics/help

APBS, Release 3.0.0

The APBS Development Team

2.8.3 APBS 1.4.2.1 (Jan 2016)

New features

• Poisson-Boltzmann Semi-Analytical Method (PB-SAM) packaged and built with APBS.

• New Geometric flow API and improvements in speed.

• Support for BinaryDX file format.

• SOR solver added for mg-auto input file option.

• DXMath improvements.

• Test suit improvements:

– APBS build in Travis-CI

– Geometric Flow tests added.

– Protein RNA tests enabled.

– Intermediate results testing.

• Example READMEs onverted to markdown and updated with latest results.

Bug fixes

• OpenMPI (mg-para) functionality restored.

• Fixed parsing PQR files that contained records other than ATOM and HETATM.

• Geometric Flow boundary indexing bug fixed.

• Build fixes:

– Out of source CMake build are again working.

– Python library may be built.

– CentOS 5 binary builds for glibc compatibility.

– Pull requests merged.

• Removed irrelevant warning messages.

Notes

The following packages are treated as submodules in APBS:

• Geometric Flow has been moved to its own repository.

• FETk has been cloned so that we could effect updates.

• PB-SAM lives here: https://github.com/Electrostatics/PB-SAM

Added a chat feature for users.

74 Chapter 2. Contents

https://github.com/Electrostatics/geoflow_c
https://github.com/Electrostatics/FETK
https://github.com/Electrostatics/PB-SAM
https://gitter.im/Electrostatics/help

APBS, Release 3.0.0

Known bugs

• Travis CI Linux builds are breaking because Geometric Flow relies on C++11 and Travis boxen have an old
GCC that does not support C++11. This also and issue for CentOS 5.

• BEM is temporarily disabled due to build issues.

• Geometric Flow build is currently broken on Windows using Visual Studio.

2.8.4 APBS 1.4.2.0 (Jan 2016)

Binary builds

Binary releases are available.

New features

• Poisson-Boltzmann Semi-Analytical Method (PB-SAM) packaged and build with APBS.

• New Geometric flow API and improvements: https://github.com/Electrostatics/apbs-pdb2pqr/issues/235

• Support for BinaryDX file format: https://github.com/Electrostatics/apbs-pdb2pqr/issues/216

• SOR solver added for mg-auto input file option.

• DXMath improvements https://github.com/Electrostatics/apbs-pdb2pqr/issues/168 and https://github.com/
Electrostatics/apbs-pdb2pqr/issues/216

• Test suite improvements:

– APBS build in Travis-CI

– Geometric Flow test added.

– Protein RNA test enabled https://github.com/Electrostatics/apbs-pdb2pqr/issues/149

– Intermediate result testing https://github.com/Electrostatics/apbs-pdb2pqr/issues/64

• Example READMEs converted to markdown and updated with latest results.

Bug fixes

• OpenMPI (mg-para) functionality restored: https://github.com/Electrostatics/apbs-pdb2pqr/issues/190

• Fized parsing PQR files that contained records other than ATOM and HETATM: https://github.com/
Electrostatics/apbs-pdb2pqr/issues/77 and https://github.com/Electrostatics/apbs-pdb2pqr/issues/214

• Geometrix Flow boundary indexing bug fixed.

• Build fixes:

– Out of source CMake build are again working.

– Python library may be built: https://github.com/Electrostatics/apbs-pdb2pqr/issues/372

– CentOS 5 binary builds for glibc compability.

– Pull requests merged.

• Removed irrelevant warning messages: https://github.com/Electrostatics/apbs-pdb2pqr/issues/378

2.8. Release history 75

https://github.com/Electrostatics/apbs-pdb2pqr/issues/235
https://github.com/Electrostatics/apbs-pdb2pqr/issues/216
https://github.com/Electrostatics/apbs-pdb2pqr/issues/168
https://github.com/Electrostatics/apbs-pdb2pqr/issues/216
https://github.com/Electrostatics/apbs-pdb2pqr/issues/216
https://github.com/Electrostatics/apbs-pdb2pqr/issues/149
https://github.com/Electrostatics/apbs-pdb2pqr/issues/64
https://github.com/Electrostatics/apbs-pdb2pqr/issues/190
https://github.com/Electrostatics/apbs-pdb2pqr/issues/77
https://github.com/Electrostatics/apbs-pdb2pqr/issues/77
https://github.com/Electrostatics/apbs-pdb2pqr/issues/214
https://github.com/Electrostatics/apbs-pdb2pqr/issues/372
https://github.com/Electrostatics/apbs-pdb2pqr/issues/378

APBS, Release 3.0.0

Notes

• The following packages are treated as submodules in APBS:

– Geometric Flow has been moved to its own repository: https://github.com/Electrostatics/geoflow_c/

– FETk has been cloned: https://github.com/Electrostatics/FETK/

– PB-SAM lives here: https://github.com/Electrostatics/PB-SAM/

• Added chat feature at https://gitter.im/Electrostatics/help/ for users.

Known bugs

• Travis-CI Linux builds are breaking because Geometric Flow relies on C++11 and Travis boxen have an old
GCC that does not support C++11. This is also an issue for CentOS 5.

• BEM is temporarily disabled due to build issues.

• Geometric Flow build is currently broken on Windows using Visual Studio.

2.8.5 APBS 1.4.1 (Aug 2014)

Summary

We are pleased to announced the release of APBS 1.4.1. This was primarily a bug fix release; however, we have
added a few features we’d like to hightlight below. We would like to also highlight our new website, still located
at: http://www.poissonboltzmann.org. This site is also hosted at GitHub and we hope that the new organization will
make it easier for people to find the content they need. While we are still in the process of migrating some remaining
content, we have added links to the previous page when needed. Thank you for your continuing support of APBS. As
always, please use our mailing list to send up questions or comments about our software.

Detailed changes

• Multigrid bug fix for volumes with large problem domain.

• We have added a preliminary implementation of geometric flow.

• Finite element method support has been re-enabled.

• Migration of the APBS source tree to GitHub for better collaboration, issue tracking, and source code manage-
ment.

• Improved test suite.

2.8.6 APBS 1.4.0 (Jul 2012)

Summary

We are pleased to announce the release of APBS 1.4.0. This version of APBS includes a massive rewrite to eliminate
FORTRAN from the software code base to improve portability and facilitate planned optimization and parallelization
activities. A more detailed list of changes is provided below. Starting with this release, we have created separate
installation packages for the APBS binaries, examples, and programming documentation. This change is in response
to user requests and recognition of the large size of the examples and documentation directories.

76 Chapter 2. Contents

https://github.com/Electrostatics/geoflow_c/
https://github.com/Electrostatics/FETK/
https://github.com/Electrostatics/PB-SAM/
https://gitter.im/Electrostatics/help/
http://www.poissonboltzmann.org
http://github.com/Electrostatics/apbs-pdb2pqr

APBS, Release 3.0.0

Detailed changes

• Removed FORTRAN dependency from APBS

• Direct line by line translation of all source from contrib/pmgZ

• Functions replaced and tested incrementally to ensure code congruence

• Created new subfolder src/pmgC for translated pmg library

• Created new macros for 2d, 3d matrix access

• In src/generic/apbs/vmatrix.h

• Simulate native FORTRAN 2 and 3 dimensional arrays

• Use 1-indexed, column-major ordering

• Allowed direct 1-1 translation from FORTRAN to ensurre code congruence

• Added additional debugging and output macros to src/generic/apbs/vhal.h

• Added message, error message, assertion, warning, and abort macros

• Macro behavior modified by the –enable-debug flag for configure

• Non-error messages directed to stderr in debug, io.mc otherwise

• All error messages are directed to stdout

• In debug mode, verbose location information is provided

• Added additional flags to configure

• –with-fetk replaces FETK_INCLUDE, FETK_LIBRARY environment flags

• –with-efence enables compiling with electric fence library

• –enable-debug eliminates compiling optimization and includes line no info

• —enable-profiling adds profiling information and sets –enable-debug

• –enable-verbose-debug prints lots of function specific information

2.8.7 APBS 1.3 (Oct 2010)

New features

• Added in new read and write binary (gz) commands. Can read gzipped DX files directly.

• Added new write format to output the atomic potentials to a flat file (see atompot)

• Added new functionality for using a previously calculated potential map for a new calculation.

• Added a new program for converting delphi potential maps to OpenDX format. tools/mesh/del2dx

• Updated Doxygen manual with call/caller graphs. Replaced HTML with PDF.

• Added tools/matlab/solver with simple Matlab LPBE solver for prototyping, teaching, etc.

• Deprecated APBS XML output format.

• Deprecated nlev keyword.

• Added etol keyword, which allows user-defined error tolerance in LPBE and NPBE calculations (default errtol
value is 1.0e-6).

2.8. Release history 77

APBS, Release 3.0.0

• Added more explanatory error messages for the case in which parm keyword is missing from APBS input file
for apolar calculations.

• Added a polar and apolor forces calculation example to examples/born/ .

• Added warning messages for users who try to compile APBS with –enable-tinker flag and run APBS stand-alone
execution.

• Switched default Opal service urls from sccne.wustl.edu to NBCR.

• Added a sanity check in routines.c: ‘bcfl map’ in the input file requires ‘usemap pot’ statement in the input file
as well.

• Introduced Vpmgp_size() routine to replace F77MGSZ call in vpmg.c

• Updated test results for APBS-1.3 release.

Bug fixes

• Modified Vpmg_dbForce with some grid checking code provided by Matteo Rotter.

• Fixed a bug in psize.py per Michael Lerner’s suggestion. The old version of psize.py gives wrong cglen and
fglen results in special cases (e.g., all y coordinates are negative values).

• Fixed a bug in examples/scripts/checkforces.sh: the condition for “Passed with rounding error” is abs(difference)
< errortol, not the other way around.

• Fixed the help string in ApbsClient.py .

• Fixed a bug in Vacc_atomdSASA(): the atom SASA needs to be reset to zero displacement after finite melement
methods.

• Fixed a bug in Vpmg_dbForce(): the initialization of rtot should appear before it is used.

• Fixed a bug in initAPOL(): center should be initialized before used.

• Fixed a bug in routines.c: eliminated spurious “Invalid data type for writing!” and “Invalid format for writing!”
from outputs with “write atompot” statement in the input file.

• Fixed a bug in vpmg.c: fixed zero potential value problem on eges and corners in non-focusing calculations.

2.8.8 APBS 1.2.1 (Dec 2009)

Bug fixes

• Added in warning into focusFillBound if there is a large value detected in setting the boundary conditions during
a focusing calculation

• Added in a check and abort in Vpmg_qmEnergy if chopped values are detected. This occurs under certain
conditions for NPBE calculations where focusing cuts into a low-dielectric regions.

• Fixed a bug in Vpmg_MolIon that causes npbe based calculations to return very large energies. This occurs
under certain conditions for NPBE calculations where focusing cuts into a low-dielectric regions.

2.8.9 APBS 1.2.0 (Oct 2009)

New features

• Updated NBCR opal service urls from http://ws.nbcr.net/opal/. . . to http://ws.nbcr.net/opal2/. . .

78 Chapter 2. Contents

http://ws.nbcr.net/opal/
http://ws.nbcr.net/opal2/

APBS, Release 3.0.0

• Increased the number of allowed write statements from 10 to 20

• Updated inputgen.py with –potdx and –istrng options added, original modification code provided by Miguel
Ortiz-Lombardía

• Added more information on PQR file parsing failures

• Added in support for OpenMP calculations for multiprocessor machines.

• Changed default Opal service from http://ws.nbcr.net/opal2/services/APBS_1.1.0 to http://sccne.wustl.edu:
8082/opal2/services/apbs-1.2

Modifications

• Applied Robert Konecny’s patch to bin/routines.h (no need to include apbscfg.h in routines.h)

Bug fixes

• Added a remove_Valist function in Python wrapper files, to fix a memory leak problem in pdb2pka

• Fixed a bug in smooth.c: bandwidth iband, jband and kband (in grid units) should be positive integers

• Fixed a bug in psize.py: for a pqr file with no ATOM entries but only HETATM entries in it, inputgen.py should
still create an APBS input file with reasonable grid lengths

• Fixed a bug in Vgrid_integrate: weight w should return to 1.0 after every i, j or k loop is finished

• Fixed a bug in routines.c, now runGB.py and main.py in tools/python/ should be working again instead of
producing segfault

• Fixed a few bugs in ApbsClient.py.in related to custom-defined APBS Opal service urls, now it should be OK
to use custom-defined APBS Opal service urls for PDB2PQR web server installations

2.8.10 APBS 1.1.0 (Mar 2009)

New features

• Moved APBS user guide and tutorial to MediaWiki

• Added in support for OpenMPI for parallel calculations

• Added in command line support for Opal job submissions (Code by Samir Unni)

• Allowed pathname containing spaces in input file, as long as the whole pathname is in quotes (“”)

• Documented ‘make test’ and related features

Modifications

• Modified the function bcCalc to march through the data array linearly when setting boundary conditions. This
removes duplication of grid points on the edge of the array and corners.

• Clarified documentation on the IDs assigned to input maps, PQRs, parameter files, etc.

• pdated tutorial to warn against spaces in APBS working directory path in VMD; updated user guide to warn
against spaces in APBS installation path on Windows

• ‘make test’ has been reconfigured to run before issuing make install (can be run from top directory)

2.8. Release history 79

http://ws.nbcr.net/opal2/services/APBS_1.1.0
http://sccne.wustl.edu:8082/opal2/services/apbs-1.2
http://sccne.wustl.edu:8082/opal2/services/apbs-1.2

APBS, Release 3.0.0

• Removed tools/visualization/vmd from tools directory in lieu of built-in support in VMD

• Path lengths can now be larger than 80 characters

• Expanded authorship list

• Added in ‘make test-opal’ as a post install test (run from the examples install directory)

• Added additional concentrations to protein-rna test case to better encompass experimental conditions used by
Garcia-Garcia and Draper; this improves agreement with the published data

Bug fixes

• Fixed typos in User Guide (ion keyword) and clarified SMPBE keyword usage

• Fixed typo in User Guide (writemat: poission -> poisson)

• Updated psize.py with Robert’s patch to fix inconsistent assignment of fine grid numbers in some (very) rare
cases

• Fixed bug with boundary condition assignment. This could potentially affect all calculations; however, probably
has limited impact: many test cases gave identical results after the bug fix; the largest change in value was <
0.07%.

2.8.11 APBS 1.0.0 (Apr 2008)

New features

• Changed license to New BSD style open source license (see http://www.opensource.org/licenses/bsd-license.
php) for more information

• Added in a feature limited version of PMG (Aqua) that reduces the memory footprint of an APBS run by 2-fold

• Modified several routines to boost the speed of APBS calculations by approximately 10% when combined with
the low memory version of APBS

• Simplified parameter input for ION and SMPBE keywords (key-value pairs)

• Examples and documentation for size-modified PBE code (Vincent Chu et al)

• Added in “fast” compile-time option that uses optimized parameters for multigrid calculations

• mg-dummy calculations can be run with any number (n>3) of grid points

• Updated PMG license to LGPL

• Added per-atom SASA information output from APOLAR calculations

• Added per-atom verbosity to APOLAR calculation outputs

• Ability to read-in MCSF-format finite element meshes (e.g., as produced by Holst group GAMER software)

• Updated installation instructions in user guide

• Updated inputgen.py to write out the electrostatic potential for APBS input file.

Bug fixes

• Updated tools/python/apbslib* for new NOsh functionality

• Clarified ELEC/DIME and ELEC/PDIME documentation

80 Chapter 2. Contents

http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

APBS, Release 3.0.0

• Added more transparent warnings/error messages about path lengths which exceed the 80-character limit

• Fixed small typo in user guide in installation instructions

• Fixed memory leaks throughout the APBS code

• Fixed NOsh_parseREAD errors for input files with r line feeds.

• Fixed a variable setting error in the test examples

• Fixed a bug where memory usage is reported incorrectly for large allocations on 64-bit systems

• Added DTRSV to APBS-supplied BLAS to satisfy FEtk SuperLU dependency

• Fixed a small bug in routines.c to print out uncharged molecule id

• Limited calculation of forces when surface maps are read in

2.8.12 APBS 0.5.1 (Jul 2007)

New features

• Replaced APOLAR->glen and APOLAR->dime keywords with APOLAR->grid

• Deprecated mergedx. Added mergedx2

– mergedx2 takes the bounding box that a user wishes to calculate a map for, as well as a resolution of the
output map. An output map meeting those specifications is calculated and store.

• Added pKa tutorial

• Added warning about strange grid settings (MGparm)

• Fixed a bug in vpmg.c that occured when a user supplied a dielectric map with the ionic strength set to zero,
causing the map to not be used.

• Removed deprecated (as of 0.5.0) tools/manip/acc in lieu of new APOLAR APBS features

• Added enumerations for return codes, new PBE solver (SMPBE) and linear/ nonlinear types

• Added in code for Size-Modified PBE (SMPBE)

Bug fixes and API changes

• Fixed buffer over-run problem

• Fixed case inconsistency with inputgen.py and psize.py scripts which caused problems with some versions of
Python

• Fixed bug wherein ‘bcfl sdh’ behaved essentially like ‘bcfl zero’. Now we have the correct behavior: ‘bcfl sdh’
behaves like ‘bcfl mdh’ thanks to the multipole code added by Mike Schnieders. Interestingly, this bug didn’t
have a major on the large-molecule test cases/examples provided by APBS but did affect the small molecule
solvation energies. Thanks to Bradley Scott Perrin for reporting this bug.

• Added support for chain IDs in noinput.py

• Fixed bug in noinput.py where REMARK lines would cause the script to fail.

2.8. Release history 81

APBS, Release 3.0.0

2.8.13 APBS 0.5.0 (Jan 2007)

New features

• Significantly streamlined the configure/build/install procedure:

– Most common compiler/library options now detected by default

– MALOC is now included as a “plugin” to simplify installation and compatibility issue

• Added new APOLAR section to input file and updated documentation – this function renders tools/manip/acc
obsolete.

• Added support for standard one-character chain IDs in PQR files.

• Added a new “spl4” charge method (chgm) option to support a quintic B-spline discretization (thanks to Michael
Schnieders).

• Updated psize.py

• Added a new “spl4” ion-accessibility coefficient model (srfm) option that uses a 7th order polynomial. This
option provides the higher order continuity necessary for stable force calculations with atomic multipole force
fields (thanks to Michael Schnieders).

• Modified the “sdh” boundary condition (bcfl) option to include dipoles and quadrupoles. Well-converged APBS
calculations won’t change with the dipole and quadrupole molecular moments included in the boundary potential
estimate, but calculations run with the boundary close to the solute should give an improved result (thanks to
Michael Schnieders).

• Updated documentation to reflect new iAPBS features (NAMD support)

• Added Gemstone example to the tutorial

• New example demonstrating salt dependence of protein-RNA interactions.

• Added code to allow for an interface with TINKER (thanks to Michael Schnieders).

• The Python wrappers are now disabled by default. They can be compiled by passing the –enable-python flag to
the configure script. This will allow users to attempt to compile the wrappers on various systems as desired.

• Added XML support for reading in parameter files when using PDB files as input. New XML files can be found
in tools/conversion/param/vparam.

• Added XML support for reading “PQR” files in XML format.

• Added support for command line –version and –help flags.

• Added support for XML output options via the –output-file and –output-format flags.

• Updated runme script in ion-pmf example to use environmental variable for APBS path

• Modified the license to allow exceptions for packaging APBS binaries with several visualization programs.
PMG license modifed as well.

• Added a DONEUMANN macro to vfetk.c to test FEM problems with all Neumann boundary conditions (e.g.,
membranes).

• Added Vpmg_splineSelect to select the correct Normalization method with either cubic or quintic (7th order
polynomial) spline methods.

• Modified the selection criteria in Vpmg_qfForce, Vpmg_ibForce and Vpmg_dbnpForce for use with the new
spline based (spl4) method.

• Added ion-pmf to the make test suite.

• Updated splash screen to include new PMG acknowledgment

82 Chapter 2. Contents

APBS, Release 3.0.0

• Added runGB.py and readGB.py to the Python utilities, which calculate solvation energy based on APBS pa-
rameterized Generalized Born model.

• Updated authorship and tool documentation

• Deprecated ELEC->gamma keyword in lieu of APOLAR->gamma

Bug fixes and API changes

• Cleanup of documentation, new Gemstone example

• Clarified usage of dime in mg-para ELEC statements

• Massive cleanup of NOsh, standardizing molecule and calculation IDs and making the serial focusing procedure
more robust

• Removed MGparm partOlap* data members; the parallel focusing centering is now done entirely within NOsh

• Updated the user manual and tutorial

• Updated psize.py to use centers and radii when calculating grid sizes (thanks to John Mongan)

• Fixed problems with FEM-based NPBE, LPBE, and LRPBE calculations

• Fixed a minor bug in the configure script that prevented MPI libraries from being found when using certain
compilers.

• Updated acinclude.m4, aclocal.m4, config/* for new version (1.9) of automake and compatibility with new
MALOC

• Fixed a bug where reading in a file in PDB format had atom IDs starting at 1 rather than 0, leading to a segmen-
tation fault.

• Fixed a bug in mypde.f where double precision values were initialized with single precision number (causing
multiplication errors).

• Fixed a bug in the FEM code. Now calls the npbe solver works properly with FEtk 1.40

• Modified the FEMParm struct to contain a new variable pkey, which is required for selecting the correct path in
AM_Refine

2.8.14 APBS 0.4.0 (Dec 2005)

New features

• New version of the ‘acc’ program available.

• Added additional verbosity to APBS output.

• Added tools/python/vgrid to the autoconf script. The directory compiles with the rest of the Python utilities and
is used for manipulating dx files.

• Modified the tools/python/noinput.py example to show the ability to get and print energy and force vectors
directly into Python arrays.

• Added dx2uhbd tool to tools/mesh for converting from dx format to UHBD format (Thanks to Robert Konecny)

• Added ability of tools/manip/inputgen.py to split a single mg-para APBS input file into multiple asynchronous
input files.

• Modified inputgen.py to be more flexible for developers wishing to directly interface with APBS.

• Added Vclist cell list class to replace internal hash table in Vacc

2.8. Release history 83

APBS, Release 3.0.0

• Modified Vacc class to use Vclist, including changes to the Vacc interface (and required changes throughout the
code)

• Consolidated Vpmg_ctor and Vpmg_ctorFocus into Vpmg_ctor

• Consolidated vpmg.c, vpmg-force.c, vpmg-energy.c, vpmg-setup.c

• Added autoconf support for compilation on the MinGW32 Windows Environment

• Added autoconf support (with Python) for Mac OS 10.4 (Tiger)

• Added the function Vpmg_solveLaplace to solve homogeneous versions of Poisson’s equation using Laplacian
eigenfunctions.

• Modified the dielectric smoothing algorithm (srfm smol) to a 9 point method based on Bruccoleri, et al. J
Comput Chem 18 268-276 (1997). NOTE: This is a faster and more flexible smoothing method. However,
when combined with the the molecular surface bugfixes listed below, this change has the potential to make
the srfm smol method give very different results from what was calculated in APBS 0.3.2. Users who need
backwards compatibility are encouraged to use the spline based smoothing method (srfm spl2) or the molecular
surface without smoothing (srfm mol).

• Added new ‘sdens’ input keyword to allow user to control the sphere density used in Vacc. This became
necessary due to the Vacc_molAcc bug fix listed below. Only applies to srfm mol and srfm smol.

• Made the examples directory documentation much more streamlined.

• Added tests for examples directory. Users can now issue a “make test” in the desired directory to compare local
results with expected results. Also includes timing results for tests for comparison between installations.

Bug fixes

• Fixed a bug in Vpmg_qmEnergy to remove a spurious coefficient of z_i^2 from the energy calculation. This
generated incorrect results for multivalent ions (but then again, the validity of the NPBE is questionable for
multivalents. . .) (Big thanks to Vincent Chu)

• Fixed a bug in vacc.c where atoms with radii less than 1A were not considered instead of atoms with no radii.

• Fixed error in tools/mesh/dx2mol.c (Thanks to Fred Damberger)

• Fixed floating point error which resulted in improper grid spacings for some cases.

• Fixed a bug in Vacc_molAcc which generates spurious regions of high internal dielectric for molecular surface-
based dielectric definitions. These regions were very small and apparently affected energies by 1-2% (when used
with the ‘srfm mol’; the ‘srfm smol’ can potentially give larger deviations). The new version of the molecular
surface is actually faster (requires 50-70% of the time for most cases) but we should all be using the spline
surface anyway – right? (Thanks to John Mongan and Jessica Swanson for finding this bug).

• Fixed a bug in vpmg.c that caused an assertion error when writing out laplacian maps (Thanks to Vincent Chu).

• Ensured Vpmg::ccf was always re-initialized (in the case where the Vpmg object is being re-used).

• Removed a spurious error estimation in finite element calculations.

• Clarified the role of ccf and other variables in mypde.f and vpmg.c by expanding/revising the inline comments.

2.8.15 APBS 0.3.2 (Nov 2004)

New features

• Updated tutorial with more mg-auto examples

84 Chapter 2. Contents

APBS, Release 3.0.0

• Updated apbs.spec file for generating RPMs on more platforms.

• Added new Python wrapper to tools/python directory showing how to run APBS without PQR and .in inputs.

• Python wrappers are now configured to compile on more architectures/ from more compilers.

• Updated tools/conversion/pdb2pqr to a new version (0.1.0) of PDB2PQR, which now can handle nucleic acids,
rebuild missing heavy atoms, add hydrogens, and perform some optimization.

Bug fixes

• The dimensions of the fine grids in the pka-lig example calculations were increased to give more reliable results
(albeit ones which don’t agree with the reported UHBD values as well).

• hz in mgparse.c causes name clash with AIX environmental variable; fixed.

• Fixed documentation to state that using a kappa map does not ignore ELEC ION statements.

• Added a stability fix for printing charge densities for LPBE-type calculations.

• Fixed a bug in NPBE calculations which led to incorrect charge densities and slightly modified total energies.

• Modified the origin when creating UHBD grids to match standard UHBD format.

• Fixed VASSERT error caused by rounding error when reading in dx grid files.

2.8.16 APBS 0.3.1 (Apr 2004)

New features

• New APBS tutorial

• New tools/python/vgrid/mergedx.py script to merge dx files generated from parallel APBS runs
back into a single dx file.

Bug fixes

• Fixed bug in parallel calculations where atoms or points on a border between two processors were not included.
Modified setup algorithm for parallel calculations to allow partitions in order to obtain grid points and spacing
from the global grid information.

• Modified extEnergy function to work with parallel calculations, giving better accuracy.

2.8.17 APBS 0.3.0 (Feb 2004)

News

APBS is now supported by the NIH via NIGMS grant GM69702-01.

Changes that affect users

• New version of the documentation

• New directory structure in tools/

• Finished fe-manual mode for ELEC calculations – this is the adaptive finite element solver

2.8. Release history 85

APBS, Release 3.0.0

• Added documetnation for fe-manual

• New apbs/tools/manip/inputgen.py script to automatically generate input APBS files from PQR data

• Added new asynchronous mode in mg-para parallel calculations to enable running on-demand and/or limited
resources

• Added new script (tools/manip/async.sh) to convert mg-para calculations in mg-async calculations

• Added following aliases for some of the more obscure parameters in the input files:

– chgm 0 ==> chgm spl0

– chgm 1 ==> chgm spl2

– srfm 0 ==> srfm mol

– srfm 1 ==> srfm smol

– srfm 2 ==> srfm spl2

– bcfl 0 ==> bcfl zero

– bcfl 1 ==> bcfl sdh

– bcfl 2 ==> bcfl mdh

– bcfl 4 ==> bcfl focus

– calcenergy 0 ==> calcenergy no

– calcenergy 1 ==> calcenergy total

– calcenergy 2 ==> calcenergy comps

– calcforce 0 ==> calcforce no

– calcforce 1 ==> calcforce total

– calcforce 2 ==> calcforce comps

• Example input files have been updated to reflect this change. NOTE: the code is backward-compliant; i.e., old
input files WILL still work.

• Added new READ options “PARM” and “MOL PDB”, see documentation for more information. These options
allow users to use unparameterized PDB files together with a parameter database.

• Updated the documentation

• Now include support for chain IDs and other optional fields in PQR/PDB files

• Added support for parsing PDB files

• Renamed:

• amber2charmm -> amber2charmm.sh

• pdb2pqr -> pdb2pqr.awk

• qcd2pqr -> qcd2pqr.awk

• Added a new Python-based pdb2pqr (tools/conversion/pdb2pqr) script that allows users to choose parameters
from different forcefields.

• Updated Python wrappers (tools/python) and added the python directory to autoconf/automake.

• Reformatted examples/README.html for readability.

86 Chapter 2. Contents

APBS, Release 3.0.0

Bug fixes

• Fixed bug in PQR parsing that can cause PDB/PQR files to be mis-read when they contain residues with numbers
in their names (Thanks to Robert Konecny and Joanna Trylska)

• Fixed bug when writing out number/charge density: unrealistic densities reported inside iVdW surface.

• Fixed bug in VMD read_dx utility

• Invalid map IDs now result in an error message instead of a core dump (thanks to Marco Berrera)

• Modified mechanism for cubic-spline output, fixing a bug associated with zero-radius atoms

• Fixed omission of srfm in sections of documentation (thanks to Sameer Varma)

• Made autoconf/automake configure setup more robust on Solaris 8 platforms (thanks to Ben Carrington)

Changes that affect developers

• New docuemtnation setup

• New tools/ directory structure

• Changed Vgreen interface and improved efficiency

• Changed Vopot interface to support multiple grids

• Added several norm and seminorm functions to Vgrid class

• Altered –with-blas syntax in configure scripts and removed –disable-blas

• Documented high-level frontend routines

• Cool new class and header-file dependency graphs courtesy of Doxygen and Graphviz

• Added substantial mypde.c-based functionality to Vfetk

• Moved chgm from PBEparm to MGparm

• Minor changes to Vfetk: removed genIcos and added genCube

• FEM solution of RPBE working again (see test/reg-fem) and is probably more up-to-date than test/fem

• Updated API documentation

• Changed many NOsh, FEMparm, MGparm variables to enums

• Changes to Valist and Vatom classes

• Fixed minor bugs in documentation formatting

• Made Vopot more robust

• Created Vparam class for parameter file parsing

• Added vparam* parameter database flat files to tools/conversion/param

2.8.18 APBS 0.2.6 (Jan 2003)

• Changed license to GPL

• Made a few routines compliant with ANSI X3.159-1989 by removing snprintf (compliant with ISO/IEC
9899:1999). This is basically for the sake of OSF support.

2.8. Release history 87

APBS, Release 3.0.0

2.8.19 APBS 0.2.5 (Nov 2002)

• Improved consistency between energies evaluated with “chgm 0” and “chgm 1”

• Made charge-field energy evaluation consistent for user-supplied charge maps

• Added new psize.py script courtesy of Todd Dolinsky.

• Updated list of APBS-related tools in User Guide.

• Added RPM capabilities courtesy of Steve Bond.

• Removed annoying excess verbosity from Vgrid.

• Updated Blue Horizon compilation instructions (thanks to Robert Konecny and Giri Chukkapalli)

• Updated autoconf/automake/libtool setup and added –disable-tools option

2.8.20 APBS 0.2.4 (Oct 2002)

• Fixed bug which set one of the z-boundaries to zero for “bcfl 1”. This can perturb results for systems where
the grid boundaries are particularly close to the biomolecule. While this is an embarassing bug, most systems
using settings suggested by the psize script appear largely unaffected (see examples/README.html). Thanks
to Michael Grabe for finding this bug (Michael, you can stop finding bugs now. . .)

• Updated VMD scripts to agree with the current OpenDX output format

• A COMMENT: As far as I can tell, the current version of OpenDX-formatted output (same as version 0.2.3)
is fully compliant with the OpenDX standards (see, for example, http://opendx.npaci.edu/docs/html/pages/
usrgu065.htm#HDRXMPLES). However, I realize this is different than the format for previous versions and
would encourage all users to update their APBS-based applications to accomodate these changes. The best so-
lution would be for all downstream applications to use the APBS Vgrid class (see http://agave.wustl.edu/apbs/
doc/api/html/group__Vgrid.html) to manipulate the data since this class should remain internally consistent be-
tween releases. Finally, I would love to have some OpenDX guru who uses APBS to contact me so I can solidfy
the data ouput format of APBS. I’m about ready to permanently switch to another format if I can’t reach a
consensus with OpenDX. . .

2.8.21 APBS 0.2.3 (Oct 2002)

• Fixed bugs in salt-dependent Helmholtz/nonlinear term of PBE affecting both LPBE and NPBE calculations.
While this bug fix only changes most energies by < 2 kJ/mol, it is recommended that all users upgrade. Many
thanks to Michael Grabe for finding and carefully documenting this bug!

• A parameter (chgm) has been added which controls the charge discretization method used. Therefore, this
version contains substantial changes in both the API and input file syntax. Specifically:

– PBEparm has two new members (chgm, setchgm)

– Vpmg_fillco requires another argument

– Vpmg_*Force functions require additional arguments

– Input files must now contain the keyword “chgm #” where # is an integer

– Please see the documentation for more information.

• Fixed problems with “slicing” off chunks of the mesh during I/O of focused calculations

• Updated authors list

• New CHARMM parameters – Robert Konecny

88 Chapter 2. Contents

http://opendx.npaci.edu/docs/html/pages/usrgu065.htm#HDRXMPLES
http://opendx.npaci.edu/docs/html/pages/usrgu065.htm#HDRXMPLES
http://agave.wustl.edu/apbs/doc/api/html/group__Vgrid.html
http://agave.wustl.edu/apbs/doc/api/html/group__Vgrid.html

APBS, Release 3.0.0

• Created enumerations for common surface and charge discretization methods

• Added Vmgrid class to support easy manipulation of nested grid data

• Added more verbosity to error with NPBE forces

• Added working Python wrappers – Todd Dolinksy

• Modified VMD scripts read_dx and loadstuff.vmd

2.8.22 APBS 0.2.2 (Aug 2002)

• There were several other changes along the way. . . I lost track.

• Changed coordinate indexing in some energy calculations

• Updated documentation to reflect recent changes on Blue Horizon

• Improved speed of problem setup BUT NOW RESTRICT use of input coefficient maps (see documentation)

• Updated documentation, placing particular emphasis on use of Intel compilers and vendor BLAS on Intel Linux
systems

• Fixed bug for nonpolar force evaluation in Vpmg_dbnpForce

• Removed MG test scripts; use bin/*.c for templates/testing

• Made main driver code completely memory-leak free (i.e., if you wanted to wrap it and call it repeatedly –
Thanks to Robert Konecny)

• Fixed main driver code for compatibility with SGI compilers (Thanks to Fabrice Leclerc)

• Made focused evaluation of forces more sensible.

• Added ‘print force’ statement

• Fixed bug in OpenDX input/output (OpenDX documentation is lousy!)

2.8.23 APBS 0.2.1 (Apr 2002)

This version requires the latest version of MALOC to work properly!

• Syntax changes

– The writepot and writeacc keywords have been generalized and new I/O features have been added. The
syntax is now:

* write pot dx potential

* write smol dx surface

* etc. Please see the User’s Manual for more information

– The read keywords has been generalized and new I/O features have been added which support the use of
pre-calculated coefficient grids, etc. The correct syntax for reading in a molecule is now “read mol pqr
mol.pqr end”; please see the User’s Manual for more information.

– The “mg” keyword is no longer supported; all input files should use “mg-manual” or one of the other
alternatives instead.

• A change in the behavior of the “calcenergy” keyword; passing an argument of 2 to this keyword now prints out
per-atom energies in addition to the energy component information

• A new option has been added to tools/manip/acc to give per-atom solvent-accessible surface area contributions

2.8. Release history 89

APBS, Release 3.0.0

• A new option has been added to tools/manip/coulomb to give per-atom electrostatic energies

• Added tools/mesh/dxmath for performing arithmetic on grid-based data (i.e., adding potential results from two
calculations, etc.)

• Added tools/mesh/uhbd_asc2bin for converting UHBD-format grid files from ASCII to binary (contributed by
Dave Sept)

• Improvement of VMD visualization scripts (contributed by Dave Sept)

• The API has changed significantly; please see the Programmer’s Manual.

• Working (but still experimental) Python wrappers for major APBS functions.

• More flexible installation capabilities (pointed out by Steve Bond)

• Added ability to use vendor-supplied BLAS

• Brought up-to-date with new MALOC

2.8.24 APBS 0.2.0 (Mar 2002)

This version is a public (beta) release candidate and includes:

• Slight modification of the user and programmer’s guides

• Scripts for visualization of potential results in VMD (Contributed by Dave Sept)

• Corrections to some of the example input files

• A few additional API features

This release requires a new version of MALOC.

2.8.25 APBS 0.1.8 (Jan 2002)

This version is a public (beta) release candidate and includes the following bug-fixes:

• Added warning to parallel focusing

• Added several test cases and validated the current version of the code for all but one (see exam-
ples/README.html)

• Fixed atom partitioning bug and external energy evaluation during focusing

• Added new program for converting OpenDX format files to MOLMOL (by Jung-Hsin Lin)

You should definitely upgrade, the previous versions may produce unreliable results.

2.8.26 APBS 0.1.7 (Dec 2001)

This version is a public (beta) release candidate and includes the following bug-fixes:

• Fixed I/O for potential in UHBD format (thanks, Richard!)

• Re-arranged garbage collection routines in driver code

• Improved FORTRAN/C interfaces

• Re-configured autoconf/libtool setup for more accurate library version number reporting

90 Chapter 2. Contents

APBS, Release 3.0.0

2.8.27 APBS 0.1.6 (Nov 2001)

This version is a public (beta) release candidate and includes the following bug-fixes and features:

• Fixed printf formatting in UHBD potential output

• Added input file support for parallel focusing

• Fixed small bug in parsing writeacc syntax (thanks, Dave)

• Added output file support for parallel focusing

• Changed some documentation

You need to download a new version of MALOC for this release.

2.8.28 APBS 0.1.5 (Oct 2001)

This version features minor bug fixes and several new features:

• Fixed shift in center of geometry for OpenDX I/O

• Made energy evaluation more robust when using NPBE

• Rearrangments of files and modified compilation behavior

• Input file support for ion species of varying valency and concentration

• Input file support incorrect nlev/dime combinations; APBS now finds acceptable settings near to the user’s
requested values

• “Automatic focusing”. Users now simply specify the physical parameters (temperature, dielectric, etc.), the
coarse and fine grid lengths and centers, and APBS calculates the rest

2.8.29 APBS 0.1.4 (Sep 2001)

This version features major bug fixes introduced in the 0.1.3 release:

• Chain ID support has been removed from the PDB/PQR parser (if anyone has a nice, flexible PDB parser they’d
like to contribute to the code, I’d appreciate it)

• Configure script has been made compatible with OSF

• Bug fix in disabling FEtk-specific header files

2.8.30 APBS 0.1.3 (Sep 2001)

This version features a few improvements in scripts, PDB parsing flexibility, and portability, including:

• Dave Sept upgraded the psize and shift scripts to allow more flexibility in PDB formats.

• Chain ID support has been added to the PDB/PQR parser

• Removed -g from compiler flags during linking of C and FORTAN under OSF (thanks to Dagmar Floeck and
Julie Mitchell for help debugging this problem)

2.8. Release history 91

APBS, Release 3.0.0

2.8.31 APBS 0.1.2 (Sep 2001)

This version is mainly designed to increase portability by switching to libtool for library creation and linking. Of
course, it also contains a few bug fixes. Highlights include:

• Changes to the User Manual

• Addition of a Programmer’s Manual

• Various FEtk-related things (no particular impact to the user)

• Improvements to the test systems

• Change in the format for printing energies

• Change in directory structure

• Fixed centering bug in main driver (only impacted I/o)

• Fixed error message bug in VPMG class

• Fixed grid length bug (popped up during sanity checks) in VPMG class

• Switched to libtool for linking

• Note that Compaq Tru64 Alpha users may still experience problems while compiling due to some strangess with
linking C and FORTRAN objects.

2.8.32 APBS 0.1.1 (Aug 2001)

I am slightly less pleased to announce the first bug-fix for APBS, version 0.1.1. This fixes compilation problems that
popped up for several folks, including:

• Syntax errors with non-GNU compilers

• Errors in the installation instructions

• Installation of binary in machine-specific directory

2.8.33 APBS 0.1.0 (Aug 2001)

I am pleased to announce the availability of a pre-beta version of the Adaptive Poisson-Boltzmann Solver (APBS)
code to selected research groups. APBS is new software designed to solve the Poisson-Boltzmann equation for very
large biomolecular systems. For more information, please visit the APBS web site at http://mccammon.ucsd.edu/apbs.

This release is designed to allow interested users to get familiar with the code. It is not currently fully functional; it
only provides for the sequential multigrid (Cartesian mesh) solution of the linearized and nonlinear Poisson-Boltzmann
equation. User-friendly parallel support will be incorporated into the next release. Other limitations that may impact
its immediate usefulness are:

• No finite element support. This is awaiting the public release of the Holst group’s FEtk library.

• Somewhat inefficient coefficient evaluation (i.e., problem setup). This should be fixed in the next release or two.

Rather than serving as a production code, this release represents a request for help in breaking the software and finding
its deficiencies before a public beta.

If you are interested in testing this early release, please go to http://wasabi.ucsd.edu/~nbaker/apbs/download/. Since
this is not a public release of APBS, you will need to enter the user-name “apbs-beta” and the password “q94p$fa!”
for access to this site. Once there, please follow the instructions to download and install APBS.

92 Chapter 2. Contents

http://mccammon.ucsd.edu/apbs
http://wasabi.ucsd.edu/~nbaker/apbs/download/

APBS, Release 3.0.0

If you are not interested in trying out this early release, but would like to stay informed about subsequent versions
of APBS, please consider subscribing to the APBS announcements mailing list by sending the message “subscribe
apbs-announce” to majordomo@mccammon.ucsd.edu.

Thank you for your time and interest in the APBS software.

2.9 Indices and tables

• genindex

• modindex

• search

2.9. Indices and tables 93

mailto:majordomo@mccammon.ucsd.edu

APBS, Release 3.0.0

94 Chapter 2. Contents

Bibliography

[Azuara2006] Azuara C, Lindahl E, Koehl P, Orland H, and Delarue M, PDB_Hydro: incorporating dipolar solvents
with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics. Nucleic Acids
Research, 2006. 34: p. W38-W42.

[Baker2005] Baker NA, Biomolecular Applications of Poisson-Boltzmann Methods, in Reviews in Computational
Chemistry, Lipkowitz KB, Larter R, and Cundari TR, Editors. 2005, John Wiley and Sons.

[Chen2010] Chen Z, Baker NA, Wei GW. Differential geometry based solvation model I: Eulerian formulation, J
Comput Phys, 229, 8231-58, 2010.

[Chu2007] Chu VB, Bai Y, Lipfert J, Herschlag D, and Doniach S, Evaluation of Ion Binding to DNA Duplexes
Using a Size-Modified Poisson-Boltzmann Theory. Biophysical Journal, 2007. 93(9): p. 3202-9.

[Fogolari2002] Fogolari F, Brigo A, and Molinari H, The Poisson-Boltzmann equation for biomolecular electrostatics:
a tool for structural biology. Journal of Molecular Recognition, 2002. 15(6): p. 377-92.

[Grochowski2007] Grochowski P, lstrok A, and Trylska J, Continuum molecular electrostatics, salt effects and coun-
terion binding. A review of the Poisson-Boltzmann theory and its modifications. Biopolymers, 2007.
89(2): p. 93-113.

[Lamm2003] Lamm G, The Poisson-Boltzmann Equation, in Reviews in Computational Chemistry, Lipkowitz KB,
Larter R, and Cundari TR, Editors. 2003, John Wiley and Sons, Inc. p. 147-366.

[Levy2003] Levy RM, Zhang LY, Gallicchio E, and Felts AK, On the nonpolar hydration free energy of proteins: sur-
face area and continuum solvent models for the solute-solvent interaction energy. Journal of the American
Chemical Society, 2003. 125(31): p. 9523-30.

[Netz2000] Netz RR and Orland H, Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. Euro-
pean Physical Journal E, 2000. 1(2-3): p. 203-14.

[Ren2012] Ren P, Chun J, Thomas DG, Schnieders M, Marucho M, Zhang J, Baker NA, Biomolecular electrostatics
and solvation: a computational perspective. Quarterly Reviews of Biophysics, 2012. 45(4): p. 427-491.

[Roux1999] Roux B and Simonson T, Implicit solvent models. Biophysical Chemistry, 1999. 78(1-2): p. 1-20.

[Vitalis2004] Vitalis A, Baker NA, McCammon JA, ISIM: A program for grand canonical Monte Carlo simulations
of the ionic environment of biomolecules, Molecular Simulation, 2004, 30(1), 45-61.

[Wagoner2006] Wagoner JA and Baker NA, Assessing implicit models for nonpolar mean solvation forces: the im-
portance of dispersion and volume terms. Proceedings of the National Academy of Sciences of the United
States of America, 2006. 103(22): p. 8331-6.

95

APBS, Release 3.0.0

[Warshel2006] Warshel A, Sharma PK, Kato M, and Parson WW, Modeling electrostatic effects in proteins. Biochim-
ica et Biophysica Acta (BBA) - Proteins & Proteomics, 2006. 1764(11): p. 1647-76.

96 Bibliography

	Overview
	Contents
	Getting APBS
	Using APBS
	Solvation model background
	Supporting APBS
	Getting help
	Further reading
	File formats
	Release history
	Indices and tables

	Bibliography

